cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 44 results. Next

A000081 Number of unlabeled rooted trees with n nodes (or connected functions with a fixed point).

Original entry on oeis.org

0, 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32973, 87811, 235381, 634847, 1721159, 4688676, 12826228, 35221832, 97055181, 268282855, 743724984, 2067174645, 5759636510, 16083734329, 45007066269, 126186554308, 354426847597, 997171512998
Offset: 0

Views

Author

Keywords

Comments

Also, number of ways of arranging n-1 nonoverlapping circles: e.g., there are 4 ways to arrange 3 circles, as represented by ((O)), (OO), (O)O, OOO, also see example. (Of course the rules here are different from the usual counting parentheses problems - compare A000108, A001190, A001699.) See Sloane's link for a proof and Vogeler's link for illustration of a(7) as arrangement of 6 circles.
Take a string of n x's and insert n-1 ^'s and n-1 pairs of parentheses in all possible legal ways (cf. A003018). Sequence gives number of distinct functions. The single node tree is "x". Making a node f2 a child of f1 represents f1^f2. Since (f1^f2)^f3 is just f1^(f2*f3) we can think of it as f1 raised to both f2 and f3, that is, f1 with f2 and f3 as children. E.g., for n=4 the distinct functions are ((x^x)^x)^x; (x^(x^x))^x; x^((x^x)^x); x^(x^(x^x)). - W. Edwin Clark and Russ Cox, Apr 29 2003; corrected by Keith Briggs, Nov 14 2005
Also, number of connected multigraphs of order n without cycles except for one loop. - Washington Bomfim, Sep 04 2010
Also, number of planted trees with n+1 nodes.
Also called "Polya trees" by Genitrini (2016). - N. J. A. Sloane, Mar 24 2017

Examples

			G.f. = x + x^2 + 2*x^3 + 4*x^4 + 9*x^5 + 20*x^6 + 48*x^7 + 115*x^8 + ...
From _Joerg Arndt_, Jun 29 2014: (Start)
The a(6) = 20 trees with 6 nodes have the following level sequences (with level of root = 0) and parenthesis words:
  01:  [ 0 1 2 3 4 5 ]    (((((())))))
  02:  [ 0 1 2 3 4 4 ]    ((((()()))))
  03:  [ 0 1 2 3 4 3 ]    ((((())())))
  04:  [ 0 1 2 3 4 2 ]    ((((()))()))
  05:  [ 0 1 2 3 4 1 ]    ((((())))())
  06:  [ 0 1 2 3 3 3 ]    (((()()())))
  07:  [ 0 1 2 3 3 2 ]    (((()())()))
  08:  [ 0 1 2 3 3 1 ]    (((()()))())
  09:  [ 0 1 2 3 2 3 ]    (((())(())))
  10:  [ 0 1 2 3 2 2 ]    (((())()()))
  11:  [ 0 1 2 3 2 1 ]    (((())())())
  12:  [ 0 1 2 3 1 2 ]    (((()))(()))
  13:  [ 0 1 2 3 1 1 ]    (((()))()())
  14:  [ 0 1 2 2 2 2 ]    ((()()()()))
  15:  [ 0 1 2 2 2 1 ]    ((()()())())
  16:  [ 0 1 2 2 1 2 ]    ((()())(()))
  17:  [ 0 1 2 2 1 1 ]    ((()())()())
  18:  [ 0 1 2 1 2 1 ]    ((())(())())
  19:  [ 0 1 2 1 1 1 ]    ((())()()())
  20:  [ 0 1 1 1 1 1 ]    (()()()()())
(End)
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 279.
  • N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, pp. 42, 49.
  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, pages 305, 998.
  • A. Cayley, On the analytical forms called trees, with application to the theory of chemical combinations, Reports British Assoc. Advance. Sci. 45 (1875), 257-305 = Math. Papers, Vol. 9, 427-460 (see p. 451).
  • J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 54 and 244.
  • Alexander S. Karpenko, Łukasiewicz Logics and Prime Numbers, Luniver Press, Beckington, 2006, p. 82.
  • D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 3d Ed. 1997, pp. 386-388.
  • D. E. Knuth, The Art of Computer Programming, vol. 1, 3rd ed., Fundamental Algorithms, p. 395, ex. 2.
  • D. E. Knuth, TAOCP, Vol. 4, Section 7.2.1.6.
  • G. Polya and R. C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds, Springer-Verlag, 1987, p. 63.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. [Comment from Neven Juric: Page 64 incorrectly gives a(21)=35224832.]
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 138.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041 (partitions), A000055 (unrooted trees), A000169, A001858, A005200, A027750, A051491, A051492, A093637, A187770, A199812, A255170, A087803 (partial sums).
Row sums of A144963. - Gary W. Adamson, Sep 27 2008
Cf. A209397 (log(A(x)/x)).
Cf. A000106 (self-convolution), A002861 (rings of these).
Column k=1 of A033185 and A034799; column k=0 of A008295.

Programs

  • Haskell
    import Data.List (genericIndex)
    a000081 = genericIndex a000081_list
    a000081_list = 0 : 1 : f 1 [1,0] where
       f x ys = y : f (x + 1) (y : ys) where
         y = sum (zipWith (*) (map h [1..x]) ys) `div` x
         h = sum . map (\d -> d * a000081 d) . a027750_row
    -- Reinhard Zumkeller, Jun 17 2013
    
  • Magma
    N := 30; P := PowerSeriesRing(Rationals(),N+1); f := func< A | x*&*[Exp(Evaluate(A,x^k)/k) : k in [1..N]]>; G := x; for i in [1..N] do G := f(G); end for; G000081 := G; A000081 := [0] cat Eltseq(G); // Geoff Bailey (geoff(AT)maths.usyd.edu.au), Nov 30 2009
    
  • Maple
    N := 30: a := [1,1]; for n from 3 to N do x*mul( (1-x^i)^(-a[i]), i=1..n-1); series(%,x,n+1); b := coeff(%,x,n); a := [op(a),b]; od: a; A000081 := proc(n) if n=0 then 1 else a[n]; fi; end; G000081 := series(add(a[i]*x^i,i=1..N),x,N+2); # also used in A000055
    spec := [ T, {T=Prod(Z,Set(T))} ]; A000081 := n-> combstruct[count](spec,size=n); [seq(combstruct[count](spec,size=n), n=0..40)];
    # a much more efficient method for computing the result with Maple. It uses two procedures:
    a := proc(n) local k; a(n) := add(k*a(k)*s(n-1,k), k=1..n-1)/(n-1) end proc:
    a(0) := 0: a(1) := 1: s := proc(n,k) local j; s(n,k) := add(a(n+1-j*k), j=1..iquo(n,k)); # Joe Riel (joer(AT)san.rr.com), Jun 23 2008
    # even more efficient, uses the Euler transform:
    with(numtheory): a:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*a(d), d=divisors(j)) *a(n-j), j=1..n-1))/ (n-1)) end:
    seq(a(n), n=0..50); # Alois P. Heinz, Sep 06 2008
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ] (* Robert A. Russell *)
    a[n_] := a[n] = If[n <= 1, n, Sum[Sum[d*a[d], {d, Divisors[j]}]*a[n-j], {j, 1, n-1}]/(n-1)]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
    a[n_] := a[n] = If[n <= 1, n, Sum[a[n - j] DivisorSum[j, # a[#] &], {j, n - 1}]/(n - 1)]; Table[a[n], {n, 0, 30}] (* Jan Mangaldan, May 07 2014, after Alois P. Heinz *)
    (* first do *) << NumericalDifferentialEquationAnalysis`; (* then *)
    ButcherTreeCount[30] (* v8 onward Robert G. Wilson v, Sep 16 2014 *)
    a[n:0|1] := n; a[n_] := a[n] = Sum[m a[m] a[n-k*m], {m, n-1}, {k, (n-1)/m}]/(n-1); Table[a[n], {n, 0, 30}] (* Vladimir Reshetnikov, Nov 06 2015 *)
    terms = 31; A[] = 0; Do[A[x] = x*Exp[Sum[A[x^k]/k, {k, 1, j}]] + O[x]^j // Normal, {j, 1, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 11 2018 *)
  • Maxima
    g(m):= block([si,v],s:0,v:divisors(m), for si in v do (s:s+r(m/si)/si),s);
    r(n):=if n=1 then 1 else sum(Co(n-1,k)/k!,k,1,n-1);
    Co(n,k):=if k=1  then g(n)  else sum(g(i+1)*Co(n-i-1,k-1),i,0,n-k);
    makelist(r(n),n,1,12); /*Vladimir Kruchinin, Jun 15 2012 */
    
  • PARI
    {a(n) = local(A = x); if( n<1, 0, for( k=1, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff(A, n))}; /* Michael Somos, Dec 16 2002 */
    
  • PARI
    {a(n) = local(A, A1, an, i); if( n<1, 0, an = Vec(A = A1 = 1 + O(x^n)); for( m=2, n, i=m\2; an[m] = sum( k=1, i, an[k] * an[m-k]) + polcoeff( if( m%2, A *= (A1 - x^i)^-an[i], A), m-1)); an[n])}; /* Michael Somos, Sep 05 2003 */
    
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1,n, sumdiv(k,d, d*A[d]) * A[n-k+1] ) );
    concat([0], A) \\ Joerg Arndt, Apr 17 2014
    
  • Python
    from functools import lru_cache
    from sympy import divisors
    @lru_cache(maxsize=None)
    def divisor_tuple(n): # cached unordered tuple of divisors
        return tuple(divisors(n,generator=True))
    @lru_cache(maxsize=None)
    def A000081(n): return n if n <= 1 else sum(sum(d*A000081(d) for d in divisor_tuple(k))*A000081(n-k) for k in range(1,n))//(n-1) # Chai Wah Wu, Jan 14 2022
  • Sage
    @CachedFunction
    def a(n):
        if n < 2: return n
        return add(add(d*a(d) for d in divisors(j))*a(n-j) for j in (1..n-1))/(n-1)
    [a(n) for n in range(31)] # Peter Luschny, Jul 18 2014 after Alois P. Heinz
    
  • Sage
    [0]+[RootedTrees(n).cardinality() for n in range(1,31)] # Freddy Barrera, Apr 07 2019
    

Formula

G.f. A(x) satisfies A(x) = x*exp(A(x)+A(x^2)/2+A(x^3)/3+A(x^4)/4+...) [Polya]
Also A(x) = Sum_{n>=1} a(n)*x^n = x / Product_{n>=1} (1-x^n)^a(n).
Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} d*a(d) ) * a(n-k+1).
Asymptotically c * d^n * n^(-3/2), where c = A187770 = 0.439924... and d = A051491 = 2.955765... [Polya; Knuth, section 7.2.1.6].
Euler transform is sequence itself with offset -1. - Michael Somos, Dec 16 2001
For n > 1, a(n) = A087803(n) - A087803(n-1). - Vladimir Reshetnikov, Nov 06 2015
For n > 1, a(n) = A123467(n-1). - Falk Hüffner, Nov 26 2015

A196545 Number of weakly ordered plane trees with n leaves.

Original entry on oeis.org

1, 1, 2, 5, 12, 34, 92, 277, 806, 2500, 7578, 24198, 75370, 243800, 776494, 2545777, 8223352, 27221690, 88984144, 296856400, 979829772, 3287985078, 10934749788, 36912408342, 123519937044, 418650924886, 1408867195252, 4794243983204, 16205061000480
Offset: 1

Views

Author

Gus Wiseman, Oct 03 2011

Keywords

Comments

A weakly ordered plane tree (p-tree) of weight n > 1 is a sequence (t_1, t_2, ..., t_k) where k > 1 and for some integer partition y of length k and sum n, the term t_i is a p-tree of weight y_i, for 1 <= i <= k. For n = 1, the only p-tree is a single node.
This definition precludes nodes with only one branch, and non-leaf nodes have weight 0. If the above is changed so that k >= 1 and y is partition of n-1, we get the trees counted by A093637. Binary p-trees are counted by A000992.

Examples

			Let o denote a single node. The 12 p-trees of weight 5 are: ((((oo)o)o)o), (((ooo)o)o), (((oo)(oo))o), (((oo)oo)o), ((oooo)o), (((oo)o)(oo)), ((ooo)(oo)), (((oo)o)oo), ((ooo)oo), ((oo)(oo)o), ((oo)ooo), (ooooo).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember;
          `if`(i>n, 0, a(i)*`if`(i=n, 1, b(n-i, i)))+`if`(i>1, b(n, i-1), 0)
        end:
    a:= proc(n) option remember;
          `if`(n=1, 1, add(a(k)*b(n-k, min(n-k, k)), k=1..n-1))
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jul 06 2012
  • Mathematica
    PTNum[n_] := PTNum[n] =
        If[n === 1, 1, Plus @@ Function[y,
        Times @@ PTNum /@ y] /@ Rest[Partitions[n]]]; Array[PTNum, 20]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[i>n, 0, a[i]*If[i == n, 1, b[n-i, i]]] + If[i>1, b[n, i-1], 0];
    a[n_] := a[n] = If[n == 1, 1, Sum[a[k]*b[n-k, Min[n-k, k] ], {k, 1, n-1}]];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Nov 05 2015, after Alois P. Heinz *)
  • PARI
    seq(n)={my(v=vector(n)); v[1] = 1; for(n=2, n, v[n] = polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); v} \\ Andrew Howroyd, Aug 26 2018
    
  • Sage
    @cached_function
    def A196545(n):
        if n == 1: return 1
        return sum(prod(A196545(t) for t in p) for p in Partitions(n,min_length=2))
    # D. S. McNeil, Oct 03 2011

Formula

a(1) = 1; for n > 1, a(n) = Sum_{y} Product_{i} a(y_i) where the sum is over all partitions of n with at least two parts.
The generating function is characterized by the formal equation 1 + 2*S(x) = x + 1/P(x) where S(x) = Sum_{n>0} a(n)*x^n and P(x) = Product_{n>0} (1 - a(n)*x^n) are the formal infinite series and formal infinite product with a(n) as coefficients and roots respectively.

A289501 Number of enriched p-trees of weight n.

Original entry on oeis.org

1, 1, 2, 4, 12, 32, 112, 352, 1296, 4448, 16640, 59968, 231168, 856960, 3334400, 12679424, 49991424, 192890880, 767229952, 2998427648, 12015527936, 47438950400, 191117033472, 760625733632, 3082675150848, 12346305839104, 50223511928832, 202359539335168
Offset: 0

Views

Author

Gus Wiseman, Jul 07 2017

Keywords

Comments

An enriched p-tree of weight n is either (case 1) the number n itself, or (case 2) a sequence of two or more enriched p-trees, having a weakly decreasing sequence of weights summing to n.

Examples

			The a(4) = 12 enriched p-trees are:
  4,
  (31), ((21)1), (((11)1)1), ((111)1),
  (22), (2(11)), ((11)2), ((11)(11)),
  (211), ((11)11),
  (1111).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+a(i)*b(n-i, min(n-i, i))))
        end:
    a:= n-> `if`(n=0, 1, 1+b(n, n-1)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jul 07 2017
  • Mathematica
    a[n_]:=a[n]=1+Sum[Times@@a/@y,{y,Rest[IntegerPartitions[n]]}];
    Array[a,20]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1,
         If[i<1, 0, b[n, i-1] + a[i] b[n-i, Min[n-i, i]]]];
    a[n_] := If[n == 0, 1, 1 + b[n, n-1]];
    a /@ Range[0, 30] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018

Formula

O.g.f.: (1/(1-x) + Product_{i>0} 1/(1-a(i)*x^i))/2.

A000992 "Half-Catalan numbers": a(n) = Sum_{k=1..floor(n/2)} a(k)*a(n-k) with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 11, 24, 47, 103, 214, 481, 1030, 2337, 5131, 11813, 26329, 60958, 137821, 321690, 734428, 1721998, 3966556, 9352353, 21683445, 51296030, 119663812, 284198136, 666132304, 1586230523, 3734594241, 8919845275, 21075282588, 50441436842
Offset: 1

Views

Author

Keywords

Comments

From David Callan, Nov 02 2006: (Start)
a(n) = number of (unlabeled, rooted) ordered trees on n-1 vertices in which all outdegrees are <= 2 and, for each vertex of outdegree 2, the sizes of its two subtrees are weakly increasing left to right (n >= 2). The number b(n) of such trees on n vertices satisfies the recurrence b[1]=1; b[n_]/;n>=2 := b[n] = b[n-1] + Sum_{i=1..floor((n-1)/2)} b[i]b[n-1-i], the first term counting trees whose root has outdegree 1 and the sum counting trees whose root has outdegree 2 by size of the left subtree. This recurrence generates b(n) = a(n+1), n >= 1. For example, the a(5)=3 such trees are:
.|....|...../\..
.|.../.\.....|..
.|.............. (End)
From R. J. Mathar, Mar 27 2009: (Start)
The connection with the Rayleigh polynomials Phi(2n,x) of A158616 is that Phi(2n,x) = Sum_{i=1..a(n)} 2^(n_i) Product_{j=2..n-1} (x+j)^(n_ij), as described by Kishore.
So a(n) counts the terms in the representation of the polynomial Phi(2n,x) as a sum over these "base" polynomials.
For example, Phi(12,x) = 2^4*(x+2)^2*(x+3) + 2^2*(x+2)*(x+3)^2 + 2^3*(x+2)*(x+3)*(x+4) + 2^3*(x+2)*(x+3)*(x+5) + 2^2*(x+2)*(x+4)*(x+5) + 2*(x+3)^2*(x+5) has a(6)=6 terms. (End)
From Wolfdieter Lang, Jan 06 2012: (Start)
The o.g.f. G(x) := Sum_{n>=0} a(n)*x^n, with a(0)=0, satisfies the relation (G(x))^2 - 2*G(x) + G2(x^2) + 2*x = 0, with the o.g.f. G2(x) := Sum_{n>=0} a(n)^2*x^n of the squares. This can be proved from the connection to the half-convolution of the sequence with itself (for this notion see a comment on A201204, where also the rule for the o.g.f. is given). (End)
Limit_{n->infinity} a(n)^(1/n) = 2.49086422... . - Vaclav Kotesovec, Oct 15 2014
This sequence diverges from A001190 for n >= 8. A001190(n) gives the number of unlabeled binary trees with n leaves and n-1 internal nodes. - Andrew Howroyd, Apr 01 2023

Examples

			G.f. = x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 11*x^7 + 24*x^8 + 47*x^9 + ...
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Compare recurrence for A000108 (the Catalan numbers).
A093637 counts above trees without the restriction that all outdegrees are <= 2.

Programs

  • Haskell
    a000992 n = a000992_list !! (n-1)
    a000992_list = 1 : f 1 0 [1] where
       f x y zs = z : f (x + y) (1 - y) (z:zs) where
         z = sum $ take x $ zipWith (*) zs $ reverse zs
    -- Reinhard Zumkeller, Dec 21 2011
    
  • Maple
    al := 1/2; M1 := 30; a[ 0 ] := 1; for n from 0 to M1 do n0 := floor(al*n);
    a[ n+1 ] := sum( a[ i ]*a[ n-i ], i=0..n0); i := 'i'; od: [ seq(a[ j ],j=0..M1) ];
    # second Maple program:
    a:= proc(n) option remember; `if`(n=1, 1,
          add(a(j)*a(n-j), j=1..n/2))
        end:
    seq(a(n), n=1..42);  # Alois P. Heinz, Sep 22 2019
  • Mathematica
    a[1]=1; a[n_]:=a[n]=Sum[a[k] a[n-k],{k,1,Floor[n/2]}]; Table[a[n],{n,1,32}] (* Jean-François Alcover, Mar 21 2011 *)
  • PARI
    A000992_list(n)={for(i=4,#n=vector(n,i,1),n[i]=sum(j=1,i\2,n[j]*n[i-j]));n}  \\ M. F. Hasler, Dec 20 2011
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A000992(n): return sum(A000992(k)*A000992(n-k) for k in range(1,(n>>1)+1)) if n>1 else 1 # Chai Wah Wu, Nov 04 2024

A301462 Number of enriched r-trees of size n.

Original entry on oeis.org

1, 2, 3, 8, 23, 77, 254, 921, 3249, 12133, 44937, 172329, 654895, 2565963, 9956885, 39536964, 156047622, 626262315, 2499486155, 10129445626, 40810378668, 166475139700, 676304156461, 2775117950448, 11342074888693, 46785595997544, 192244951610575, 796245213910406
Offset: 0

Views

Author

Gus Wiseman, Mar 21 2018

Keywords

Comments

An enriched r-tree of size n > 0 is either a single node of size n, or a finite sequence of enriched r-trees with weakly decreasing sizes summing to n - 1.
These are different from the R-trees of data science and the enriched R-trees of Bousquet-Mélou and Courtiel.

Examples

			The a(3) = 8 enriched r-trees: 3, (2), ((1)), ((())), (11), (1()), (()1), (()()).
		

Crossrefs

Programs

  • Mathematica
    ert[n_]:=ert[n]=1+Sum[Times@@ert/@y,{y,IntegerPartitions[n-1]}];
    Array[ert,30]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); concat([1], v)} \\ Andrew Howroyd, Aug 26 2018

Formula

O.g.f.: 1/(1 - x) + x Product_{i > 0} 1/(1 - a(i) x^i).

A301467 Number of enriched r-trees of size n with no empty subtrees.

Original entry on oeis.org

1, 2, 4, 8, 20, 48, 136, 360, 1040, 2944, 8704, 25280, 76320, 226720, 692992, 2096640, 6470016, 19799936, 61713152, 190683520, 598033152, 1863995392, 5879859200, 18438913536, 58464724992, 184356152832, 586898946048, 1859875518464, 5941384080384, 18901502482432
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2018

Keywords

Comments

An enriched r-tree of size n > 0 with no empty subtrees is either a single node of size n, or a finite nonempty sequence of enriched r-trees with no empty subtrees and with weakly decreasing sizes summing to n - 1.

Examples

			The a(4) = 8 enriched r-trees with no empty subtrees: 4, (3), (21), ((2)), (111), ((11)), ((1)1), (((1))).
The a(5) = 20 enriched r-trees with no empty subtrees:
  5,
  (4), ((3)), ((21)), (((2))), ((111)), (((11))), (((1)1)), ((((1)))),
  (31), (22), (2(1)), ((2)1), ((1)2), ((11)1), ((1)(1)), (((1))1),
  (211), ((1)11),
  (1111).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(b(n-i*j, i-1)* a(i)^j, j=0..n/i)))
        end:
    a:= n-> `if`(n<2, n, 1+b(n-1$2)):
    seq(a(n), n=1..30);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    pert[n_]:=pert[n]=If[n===1,1,1+Sum[Times@@pert/@y,{y,IntegerPartitions[n-1]}]];
    Array[pert,30]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0,
         Sum[b[n - i*j, i - 1] a[i]^j, {j, 0, n/i}]]];
    a[n_] := a[n] = If[n < 2, n, 1 + b[n-1, n-1]];
    Array[a, 30] (* Jean-François Alcover, May 09 2021, after Alois P. Heinz *)
  • PARI
    seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, v[n] = 1 + polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); v} \\ Andrew Howroyd, Aug 26 2018

Formula

O.g.f.: x^2/(1 - x) + x Product_{i > 0} 1/(1 - a(i) x^i).

A301422 Regular triangle where T(n,k) is the number of r-trees of size n with k leaves.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 4, 3, 1, 0, 1, 6, 8, 4, 1, 0, 1, 9, 19, 14, 5, 1, 0, 1, 12, 36, 40, 21, 6, 1, 0, 1, 16, 65, 102, 75, 30, 7, 1, 0, 1, 20, 106, 223, 224, 123, 40, 8, 1, 0, 1, 25, 168, 457, 604, 439, 191, 52, 9, 1, 0, 1, 30, 248, 847, 1433, 1346, 764, 276
Offset: 1

Views

Author

Gus Wiseman, Mar 20 2018

Keywords

Comments

An r-tree (A093637) of size n > 0 is a finite sequence of r-trees with weakly decreasing sizes summing to n - 1. This is a similar construction to p-trees (A196545) except that r-trees are not required to be series-reduced and are weighted by all nodes (including the root) rather than just the leaves.

Examples

			Triangle begins:
  1
  1   0
  1   1   0
  1   2   1   0
  1   4   3   1   0
  1   6   8   4   1   0
  1   9  19  14   5   1   0
  1  12  36  40  21   6   1   0
  1  16  65 102  75  30   7   1   0
  1  20 106 223 224 123  40   8   1   0
  1  25 168 457 604 439 191  52   9   1   0
  ...
The T(6,3) = 8 r-trees: (((ooo))), (((oo)o)), (((o)oo)), (((oo))o), (((o)o)o), ((oo)(o)), (((o))oo), ((o)(o)o).
		

Crossrefs

Programs

  • Mathematica
    rtrees[n_]:=Join@@Table[Tuples[rtrees/@y],{y,IntegerPartitions[n-1]}];
    Table[Length[Select[rtrees[n],Count[#,{},{-2}]===k&]],{n,8},{k,n}]
  • PARI
    A(n)={my(v=vector(n)); v[1]=y; for(n=2, n, v[n] = polcoef(1/prod(k=1, n-1, 1 - v[k]*x^k + O(x^n)), n-1)); vector(n, k, Vecrev(v[k]/y,k))}
    { my(T=A(10)); for(n=1, #T, print(T[n])) } \\ Andrew Howroyd, Aug 26 2018

A301480 Number of rooted twice-partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 8, 15, 30, 54, 103, 186, 345, 606, 1115, 1936, 3466, 6046, 10630, 18257, 31927, 54393, 93894, 159631, 272155, 458891, 779375, 1305801, 2196009, 3667242, 6130066, 10170745, 16923127, 27942148, 46211977, 76039205, 125094369, 204952168, 335924597
Offset: 1

Views

Author

Gus Wiseman, Mar 22 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n.

Examples

			The a(5) = 8 rooted twice-partitions: ((3)), ((21)), ((111)), ((2)()), ((11)()), ((1)(1)), ((1)()()), (()()()()).
The a(6) = 15 rooted twice-partitions:
(4), (31), (22), (211), (1111),
(3)(), (21)(), (111)(), (2)(1), (11)(1),
(2)()(), (11)()(), (1)(1)(),
(1)()()(),
()()()()().
		

Crossrefs

Programs

  • Mathematica
    nn=30;
    ser=x*Product[1/(1-PartitionsP[n-1]x^n),{n,nn}];
    Table[SeriesCoefficient[ser,{x,0,n}],{n,nn}]
  • PARI
    seq(n)={Vec(1/prod(k=1, n-1, 1 - numbpart(k-1)*x^k + O(x^n)))} \\ Andrew Howroyd, Aug 29 2018

Formula

O.g.f.: x * Product_{n > 0} 1/(1 - P(n-1) x^n) where P = A000041.

A300486 Number of relatively prime or monic partitions of n.

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 15, 18, 28, 35, 56, 64, 101, 120, 168, 210, 297, 348, 490, 583, 776, 946, 1255, 1482, 1952, 2335, 2981, 3581, 4565, 5387, 6842, 8119, 10086, 12013, 14863, 17527, 21637, 25525, 31083, 36695, 44583, 52256, 63261, 74171, 88932, 104303, 124754
Offset: 1

Views

Author

Gus Wiseman, Apr 15 2018

Keywords

Comments

A relatively prime or monic partition of n is an integer partition of n that is either of length 1 (monic) or whose parts have no common divisor other than 1 (relatively prime).

Examples

			The a(6) = 8 relatively prime or monic partitions are (6), (51), (411), (321), (3111), (2211), (21111), (111111). Missing from this list are (42), (33), (222).
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Or[Length[#]===1,GCD@@#===1]&]],{n,20}]
  • PARI
    a(n)={(n > 1) + sumdiv(n, d, moebius(d)*numbpart(n/d))} \\ Andrew Howroyd, Aug 29 2018

Formula

a(n > 1) = 1 + A000837(n) = 1 + Sum_{d|n} mu(d) * A000041(n/d).

A301706 Number of rooted thrice-partitions of n.

Original entry on oeis.org

1, 1, 2, 4, 9, 19, 43, 91, 201, 422, 918, 1896, 4089, 8376, 17793, 36445, 76446, 155209, 324481, 655426, 1355220, 2741092, 5617505, 11291037, 23086423, 46227338, 93753196, 187754647, 378675055, 754695631, 1518414812, 3016719277, 6037006608, 11984729983
Offset: 1

Views

Author

Gus Wiseman, Mar 25 2018

Keywords

Comments

A rooted partition of n is an integer partition of n - 1. A rooted twice-partition of n is a choice of a rooted partition of each part in a rooted partition of n. A rooted thrice-partition of n is a choice of a rooted twice-partition of each part in a rooted partition of n.

Examples

			The a(5) = 9 rooted thrice-partitions:
((2)), ((11)), ((1)()), (()()()),
((1))(), (()())(), (())(()),
(())()(),
()()()().
The a(6) = 19 rooted thrice-partitions:
((3)), ((21)), ((111)), ((2)()), ((11)()), ((1)(1)), ((1)()()), (()()()()),
((2))(), ((11))(), ((1)())(), (()()())(), ((1))(()), (()())(()),
((1))()(), (()())()(), (())(())(),
(())()()(),
()()()()().
		

Crossrefs

Programs

  • Mathematica
    twire[n_]:=twire[n]=Sum[Times@@PartitionsP/@(ptn-1),{ptn,IntegerPartitions[n-1]}];
    thrire[n_]:=Sum[Times@@twire/@ptn,{ptn,IntegerPartitions[n-1]}];
    Array[thrire,30]
Showing 1-10 of 44 results. Next