A093637 G.f.: A(x) = Product_{n>=0} 1/(1 - a(n)*x^(n+1)) = Sum_{n>=0} a(n)*x^n.
1, 1, 2, 4, 9, 20, 49, 117, 297, 746, 1947, 5021, 13378, 35237, 95123, 254825, 694987, 1882707, 5184391, 14177587, 39289183, 108337723, 301997384, 837774846, 2347293253, 6546903307, 18417850843, 51617715836, 145722478875, 409964137081, 1161300892672
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 49*x^6 +... where A(x) = 1/((1-x)*(1-x^2)*(1-2*x^3)*(1-4*x^4)*(1-9*x^5)*(1-20*x^6)*(1-49*x^7)...).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2000
Programs
-
Maple
b:= proc(n, i) option remember; `if`(i>n, 0, a(i-1)*`if`(i=n, 1, b(n-i, i)))+`if`(i>1, b(n, i-1), 0) end: a:= n-> `if`(n=0, 1, b(n, n)): seq(a(n), n=0..40); # Alois P. Heinz, Jul 20 2012
-
Mathematica
b[n_, i_] := b[n, i] = If[i>n, 0, a[i-1]*If[i == n, 1, b[n-i, i]]] + If[i>1, b[n, i-1], 0]; a[n_] := If[n == 0, 1, b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 15 2015, after Alois P. Heinz *)
-
PARI
{a(n) = polcoeff(prod(i=0,n-1,1/(1-a(i)*x^(i+1)))+x*O(x^n),n)} for(n=0,25,print1(a(n),", "))
-
PARI
{a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,1/m*sum(k=1,n, polcoeff(A+O(x^k), k-1)^m*x^(m*k)) +x*O(x^n))));polcoeff(A,n)} for(n=0,25,print1(a(n),", "))
Formula
G.f. satisfies: A(x) = exp( Sum_{n>=1} Sum_{k>=1} a(k)^n * (x^k)^n /n ). - Paul D. Hanna, Oct 26 2011
Comments