cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093637 G.f.: A(x) = Product_{n>=0} 1/(1 - a(n)*x^(n+1)) = Sum_{n>=0} a(n)*x^n.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 49, 117, 297, 746, 1947, 5021, 13378, 35237, 95123, 254825, 694987, 1882707, 5184391, 14177587, 39289183, 108337723, 301997384, 837774846, 2347293253, 6546903307, 18417850843, 51617715836, 145722478875, 409964137081, 1161300892672
Offset: 0

Views

Author

Paul D. Hanna, Apr 07 2004

Keywords

Comments

From David Callan, Nov 02 2006: (Start)
a(n) = number of (unlabeled, rooted) ordered trees on n edges such that, for each vertex of outdegree >= 1, the sizes of its subtrees are weakly increasing left to right. This notion is close to that of unlabeled, unordered rooted tree (A000081) but, for example,
./\...../\.
|./\.../\.|
|.........|
count as two different trees here whereas A000081 treats them as the same.
(End)
We can also think of a(n) in terms of integer partitions, recursively: Let a(0)=1. For each partition n=p1+p2+p3+...+pr, consider the number q=a(p1-1)*a(p2-1)*...*a(pr-1). Then, summing these q over all the partitions of n gives a(n). - Daniele P. Morelli, May 22 2010

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 49*x^6 +...
where
A(x) = 1/((1-x)*(1-x^2)*(1-2*x^3)*(1-4*x^4)*(1-9*x^5)*(1-20*x^6)*(1-49*x^7)...).
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(i>n, 0,
           a(i-1)*`if`(i=n, 1, b(n-i, i)))+`if`(i>1, b(n, i-1), 0)
        end:
    a:= n-> `if`(n=0, 1, b(n, n)):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jul 20 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[i>n, 0, a[i-1]*If[i == n, 1, b[n-i, i]]] + If[i>1, b[n, i-1], 0]; a[n_] := If[n == 0, 1, b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 15 2015, after Alois P. Heinz *)
  • PARI
    {a(n) = polcoeff(prod(i=0,n-1,1/(1-a(i)*x^(i+1)))+x*O(x^n),n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=exp(sum(m=1,n,1/m*sum(k=1,n, polcoeff(A+O(x^k), k-1)^m*x^(m*k)) +x*O(x^n))));polcoeff(A,n)}
    for(n=0,25,print1(a(n),", "))

Formula

G.f. satisfies: A(x) = exp( Sum_{n>=1} Sum_{k>=1} a(k)^n * (x^k)^n /n ). - Paul D. Hanna, Oct 26 2011