cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A242824 Primes formed by the initial digits of the decimal expansion of 1/7, starting at the first nonzero digit in the expansion.

Original entry on oeis.org

1428571, 1428571428571428571428571
Offset: 1

Views

Author

Felix Fröhlich, May 23 2014

Keywords

Comments

Next term has 355 digits.
All terms are of the form 6x+1; a(4) has 823 digits; and there are no further terms up to and including 10000 digits. - Harvey P. Dale, Oct 03 2018

Crossrefs

Corresponding sequences for 1/k: A093676 (k=12), A242826 (k=13), A242827 (k=14), A242828 (k=17), A242833 (k=19).

Programs

  • Mathematica
    Select[Table[FromDigits[PadRight[{},6n+1,{1,4,2,8,5,7}]],{n,200}],PrimeQ](* Harvey P. Dale, Oct 03 2018 *)

A242833 Primes formed by the initial digits of the decimal expansion of 1/19, starting at the first nonzero digit in the expansion.

Original entry on oeis.org

5, 52631, 5263157894736842105263157, 52631578947368421052631578947368421052631578947368421052631
Offset: 1

Views

Author

Felix Fröhlich, May 23 2014

Keywords

Comments

a(5) has 95 digits and a(6) has 907 digits. - Michel Marcus, May 27 2014

Crossrefs

Cf. A021023.
Corresponding sequences for 1/k: A242824 (k=7), A093676 (k=12), A242826 (k=13), A242827(k=14), A242828 (k=17).

Programs

  • PARI
    lista(nn) = {v = [5,2,6,3,1,5,7,8,9,4,7,3,6,8,4,2,1,0]; n = 0; for (i=0, nn, n = 10*n+ v[(i % 18)+1]; if (ispseudoprime(n), print1(n, ", ")););} \\ Michel Marcus, May 27 2014

A242826 Primes formed by the initial digits of the decimal expansion of 1/13, starting at the first nonzero digit in the expansion.

Original entry on oeis.org

7, 769, 769230769, 769230769230769230769, 769230769230769230769230769230769
Offset: 1

Views

Author

Felix Fröhlich, May 23 2014

Keywords

Crossrefs

Cf. A021017.
Corresponding sequences for 1/k: A242824 (k=7), A093676 (k=12), A242827 (k=14), A242828 (k=17), A242833 (k=19).

A242827 Primes formed by the initial digits of the decimal expansion of 1/14, starting at the first nonzero digit in the expansion.

Original entry on oeis.org

7, 71, 71428571, 7142857142857, 7142857142857142857142857142857
Offset: 1

Views

Author

Felix Fröhlich, May 23 2014

Keywords

Comments

a(6) has 104 digits. - Michel Marcus, May 26 2014

Crossrefs

Cf. A021018.
Corresponding sequences for 1/k: A242824 (k=7), A093676 (k=12), A242826 (k=13), A242828 (k=17), A242833 (k=19).

Programs

  • PARI
    lista(nn) = {v = [7,1,4,2,8,5]; n = 0; for (i=0, nn, n = 10*n+ v[(i % 6)+1]; if (ispseudoprime(n), print1(n, ", ")););} \\ Michel Marcus, May 26 2014

A242828 Primes formed by the initial digits of the decimal expansion of 1/17, starting at the first nonzero digit in the expansion.

Original entry on oeis.org

5, 5882352941, 588235294117, 588235294117647058823529411764705882352941176470588235294117
Offset: 1

Views

Author

Felix Fröhlich, May 23 2014

Keywords

Comments

There is no other term with 126 or fewer digits.
No more terms < 10^20000. - Jon E. Schoenfield, Nov 02 2019

Crossrefs

Cf. A007450.
Corresponding sequences for 1/k: A242824 (k=7), A093676 (k=12), A242826 (k=13), A242827(k=14), A242833 (k=19).

Programs

  • Mathematica
    Select[Table[FromDigits[PadRight[{},n,{5,8,8,2,3,5,2,9,4,1,1,7,6,4,7,0}]],{n,60}],PrimeQ] (* Harvey P. Dale, Aug 08 2021 *)
  • PARI
    lista(nn) = {v = [5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 0]; n = 0; for (i=0, nn, n = 10*n+ v[(i % 16)+1]; if (ispseudoprime(n), print1(#Str(n), ", ")););} \\ Michel Marcus, May 27 2014

A056723 Numbers k such that 8*10^k + 3*R_k is prime, where R_k = 11...1 is the repunit (A002275) of length k.

Original entry on oeis.org

1, 7, 23, 29, 133, 173, 367, 1925, 3707, 5765, 9709, 19573, 43753
Offset: 1

Views

Author

Robert G. Wilson v, Aug 11 2000

Keywords

Comments

Also numbers k such that (25*10^k - 1)/3 is prime.

Crossrefs

Programs

  • Mathematica
    Do[ If[ PrimeQ[ 8*10^n + 3*(10^n-1)/9], Print[n]], {n, 0, 10000}]

Extensions

Corrected by Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 01 2008
19573 and 43753 from Serge Batalov, Jan 2009 confirmed as next terms by Ray Chandler, Feb 13 2012

A276827 Primes p such that the greatest prime factor of 3*p+1 is at most 5.

Original entry on oeis.org

3, 5, 13, 53, 83, 853, 2083, 3413, 5333, 85333, 208333, 218453, 341333, 3495253, 5461333, 8533333, 13981013, 83333333, 853333333, 22369621333, 218453333333, 341333333333, 2236962133333, 3665038759253, 53333333333333, 91625968981333, 203450520833333, 1333333333333333
Offset: 1

Views

Author

Robert Israel, Sep 19 2016

Keywords

Comments

Prime(i) such that A087273(i) <= 5.

Crossrefs

Cf. A087273.
Contains A093671, A093674, and A093676.

Programs

  • Maple
    N = 10^20: # to get all terms <= N
    Res:= {}:
    for a from 0 to ilog2(floor((3*N+1)/5)) do
      twoa:= 2^a;
      for b from (a mod 2) by 2 do
        p:= (twoa*5^b-1)/3;
        if p > N then break fi;
        if isprime(p) then
          Res:= Res union {p};
        fi
    od od:
    sort(convert(Res,list));
  • Mathematica
    Select[Prime@ Range[10^6], FactorInteger[3 # + 1][[-1, 1]] <= 5 &] (* Michael De Vlieger, Sep 19 2016 *)
  • PARI
    list(lim)=my(v=List(),s,t); lim=lim\1*3 + 1; for(i=0,logint(lim\2,5), t=if(i%2,2,4)*5^i; while(t<=lim, if(isprime(p=t\3), listput(v,p)); t<<=2)); Set(v) \\ Charles R Greathouse IV, Sep 19 2016
Showing 1-7 of 7 results.