A113077
Column 3 of square table A093729; a(n) gives the number of n-th generation descendents of a node labeled (3) in the tree of tournament sequences, for n>=0.
Original entry on oeis.org
1, 3, 15, 123, 1656, 36987, 1391106, 89574978, 10036638270, 1986129275673, 703168200003336, 450303519404234922, 526421174510139860241, 1132076561237754405471033, 4507472672071759672232970720
Offset: 0
The tree of tournament sequences of descendents of a node labeled (3) begins:
[3]; generation 1: 3->[4,5,6]; generation 2: 4->[5,6,7,8],
5->[6,7,8,9,10], 6->[7,8,9,10,11,12]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
-
{a(n,q=2)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^3)[n+1,1])}
A093730
Antidiagonal sums of triangle A093729, which enumerates the number of nodes in the tree of tournament sequences.
Original entry on oeis.org
1, 1, 2, 5, 18, 102, 949, 14731, 386060, 17323052, 1351157580, 185867701560, 45682244004244, 20283964291276804, 16423005586691362832, 24434416299840231799694, 67236458264587977465709983
Offset: 0
-
T[n_, k_] := T[n, k] = If[n<0, 0, If[n==0, 1, If[k==0, 0, If[k<=n, T[n, k-1] - T[n-1, k] + T[n-1, 2*k-1] + T[n-1, 2*k], Sum[(-1)^(j-1) * Binomial[n+1, j]*T[n, k-j], {j, 1, n+1}]]]]]; a[n_] := Sum[T[n-k, k], {k, 0, n}]; Table[a[n], {n, 0, 16}] (* Jean-François Alcover, Oct 06 2016, translated from PARI *)
-
{T(n,k)=if(n<0,0,if(n==0,1,if(k==0,0, if(k<=n,T(n,k-1)-T(n-1,k)+T(n-1,2*k-1)+T(n-1,2*k), sum(j=1,n+1, (-1)^(j-1)*binomial(n+1,j)*T(n,k-j))))))}
a(n)=sum(k=0,n,T(n-k,k))
-
@CachedFunction
def T(n, k): # T = A093729
if n<0: return 0
elif n==0: return 1
elif k==0: return 0
elif kA093730(n): return sum(T(n-k,k) for k in range(n+1))
[A093730(n) for n in range(31)] # G. C. Greubel, Feb 22 2024
A008934
Number of tournament sequences: sequences (a_1, a_2, ..., a_n) with a_1 = 1 such that a_i < a_{i+1} <= 2*a_i for all i.
Original entry on oeis.org
1, 1, 2, 7, 41, 397, 6377, 171886, 7892642, 627340987, 87635138366, 21808110976027, 9780286524758582, 7981750158298108606, 11950197013167283686587, 33046443615914736611839942, 169758733825407174485685959261, 1627880269212042994531083889564192
Offset: 0
The 7 tournament sequences of length 4 are 1234, 1235, 1236, 1245, 1246, 1247, 1248.
- Alois P. Heinz, Table of n, a(n) for n = 0..85 (first 31 terms from T. D. Noe)
- M. Cook and M. Kleber, Tournament sequences and Meeussen sequences, Electronic J. Comb. 7 (2000), #R44.
- E. Neuwirth, Computing tournament sequence numbers efficiently..., Séminaire Lotharingien de Combinatoire, B47h (2002), 12 pp.
- Mauro Torelli, Increasing integer sequences and Goldbach's conjecture, RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, 40:2 (2006), pp. 107-121.
- Index entries for sequences related to tournaments
Forms column 0 of triangle
A097710.
-
t[n_?Negative, ] = 0; t[0, ] = 1; t[, 0] = 0; t[n, k_] /; k <= n := t[n, k] = t[n, k-1] - t[n-1, k] + t[n-1, 2k-1] + t[n-1, 2 k]; t[n_, k_] /; k > n := t[n, k] =Sum[(-1)^(j-1) Binomial[n+1, j]*t[n, k-j] , {j, 1, n+1}]; Table[t[n, 1], {n, 0, 15} ] (* Jean-François Alcover, May 17 2011, after PARI prog. *)
-
{T(n,k)=if(n<0,0,if(n==0,1,if(k==0,0, if(k<=n,T(n,k-1)-T(n-1,k)+T(n-1,2*k-1)+T(n-1,2*k), sum(j=1,n+1,(-1)^(j-1)*binomial(n+1,j)*T(n,k-j))))))} /*(Cook-Kleber)*/ a(n)=T(n,1)
-
@CachedFunction
def T(n, k):
if n<0: return 0
elif n==0: return 1
elif k==0: return 0
elif kA008934(n): return T(n,1)
[A008934(n) for n in range(31)] # G. C. Greubel, Feb 22 2024
A113078
Number of tournament sequences: a(n) gives the number of n-th generation descendents of a node labeled (4) in the tree of tournament sequences.
Original entry on oeis.org
1, 4, 26, 274, 4721, 134899, 6501536, 537766009, 77598500096, 19821981700354, 9077118324755246, 7531446638893873684, 11423775838657143826346, 31914367054676982206368909, 165251261153335414813452988541
Offset: 0
The tree of tournament sequences of descendents of a node labeled (4) begins:
[4]; generation 1: 4->[5,6,7,8]; generation 2: 5->[6,7,8,9,10],
6->[7,8,9,10,11,12], 7->[8,9,10,11,12,13,14],
8->[9,10,11,12,13,14,15,16]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A113077,
A113079,
A008934,
A113089,
A113096,
A113098,
A113100,
A113107,
A113109,
A113111,
A113113.
-
{a(n,q=2)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^4)[n+1,1])}
A113079
Number of tournament sequences: a(n) gives the number of n-th generation descendents of a node labeled (5) in the tree of tournament sequences.
Original entry on oeis.org
1, 5, 40, 515, 10810, 376175, 22099885, 2231417165, 393643922005, 123097221805100, 69087264010363930, 70321483026073531730, 130954011392485408662370, 449450774746306949114288795
Offset: 0
The tree of tournament sequences of descendents of a node labeled (5) begins:
[5]; generation 1: 5->[6,7,8,9,10]; generation 2:
6->[7,8,9,10,11,12], 7->[8,9,10,11,12,13,14],
8->[9,10,11,12,13,14,15,16], 9->[10,11,12,13,14,15,16,17,18],
10->[11,12,13,14,15,16,17,18,19,20]; ...
Then a(n) gives the number of nodes in generation n.
Also, a(n+1) = sum of labels of nodes in generation n.
Cf.
A113077,
A113078,
A008934,
A113089,
A113096,
A113098,
A113100,
A113107,
A113109,
A113111,
A113113.
-
{a(n,q=2)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^5)[n+1,1])}
A113081
Square table T, read by antidiagonals, where T(n,k) gives the number of n-th generation descendents of a node labeled (k), in the tree of 3-tournament sequences, for n>=1.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 21, 10, 3, 1, 0, 331, 114, 21, 4, 1, 0, 11973, 2970, 331, 36, 5, 1, 0, 1030091, 182402, 11973, 724, 55, 6, 1, 0, 218626341, 27392682, 1030091, 33476, 1345, 78, 7, 1, 0, 118038692523, 10390564242, 218626341, 3697844, 75695, 2246
Offset: 0
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,...
0,1,2,3,4,5,6,7,8,9,10,11,...
0,3,10,21,36,55,78,105,136,171,210,...
0,21,114,331,724,1345,2246,3479,5096,7149,...
0,331,2970,11973,33476,75695,148926,265545,440008,...
0,11973,182402,1030091,3697844,10204145,23694838,...
0,1030091,27392682,218626341,1011973796,3416461455,...
0,218626341,10390564242,118038692523,706848765844,...
0,118038692523,10210795262650,166013096151621,...
-
/* Generalized Cook-Kleber Recurrence */ T(n,k,q=3)=if(n==0,1,if(n<0 || k<=0,0,if(n==1,k, if(n>=k,sum(j=1,k,T(n-1,k+(q-1)*j)), sum(j=1,n+1,(-1)^(j-1)*binomial(n+1,j)*T(n,k-j))))))
-
/* Matrix Power Recurrence (Paul D. Hanna) */ T(n,k,q=3)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^k)[n+1,1])
A113092
Square table T, read by antidiagonals, where T(n,k) gives the number of n-th generation descendents of a node labeled (k) in the tree of 4-tournament sequences.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 4, 2, 1, 0, 46, 13, 3, 1, 0, 1504, 242, 27, 4, 1, 0, 146821, 13228, 693, 46, 5, 1, 0, 45236404, 2241527, 52812, 1504, 70, 6, 1, 0, 46002427696, 1237069018, 12628008, 146821, 2780, 99, 7, 1, 0, 159443238441379, 2305369985312, 9924266772
Offset: 0
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,...
0,1,2,3,4,5,6,7,8,9,10,11,...
0,4,13,27,46,70,99,133,172,216,265,...
0,46,242,693,1504,2780,4626,7147,10448,14634,...
0,1504,13228,52812,146821,330745,648999,1154923,1910782,...
0,146821,2241527,12628008,45236404,124626530,289031301,...
0,45236404,1237069018,9924266772,46002427696,155367674020,...
0,46002427696,2305369985312,26507035453923,159443238441379,...
0,159443238441379,14874520949557933,246323730279500082,...
-
/* Generalized Cook-Kleber Recurrence */
{T(n,k,q=4)=if(n==0,1,if(n<0||k<=0,0,if(n==1,k, if(n>=k,sum(j=1,k,T(n-1,k+(q-1)*j)), sum(j=1,n+1,(-1)^(j-1)*binomial(n+1,j)*T(n,k-j))))))}
for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
-
/* Matrix Power Recurrence (Paul D. Hanna) */
{T(n,k,q=4)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); return((M^k)[n+1,1])}
for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
A113103
Square table T, read by antidiagonals, where T(n,k) gives the number of n-th generation descendents of a node labeled (k) in the tree of 5-tournament sequences.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 2, 1, 0, 85, 16, 3, 1, 0, 4985, 440, 33, 4, 1, 0, 1082905, 43600, 1251, 56, 5, 1, 0, 930005021, 16698560, 173505, 2704, 85, 6, 1, 0, 3306859233805, 26098464448, 94216515, 481376, 4985, 120, 7, 1, 0, 50220281721033905
Offset: 0
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,...
0,1,2,3,4,5,6,7,8,9,10,11,...
0,5,16,33,56,85,120,161,208,261,320,...
0,85,440,1251,2704,4985,8280,12775,18656,26109,...
0,4985,43600,173505,481376,1082905,2122800,3774785,6241600,...
0,1082905,16698560,94216515,337587520,930005021,2156566656,...
0,930005021,26098464448,210576669921,978162377600,...
0,3306859233805,172513149018752,2002383115518243,...
0,50220281721033905,4938593053649344000,82856383278525698433,...
-
/* Generalized Cook-Kleber Recurrence */
{T(n,k,q=5)=if(n==0,1,if(n<0||k<=0,0,if(n==1,k, if(n>=k,sum(j=1,k,T(n-1,k+(q-1)*j)), sum(j=1,n+1,(-1)^(j-1)*binomial(n+1,j)*T(n,k-j))))))}
for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
-
/* Matrix Power Recurrence (Paul D. Hanna) */
{T(n,k,q=5)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^q)[r-1,c-1])+(M^q)[r-1,c]))); (M^k)[n+1,1]}
for(n=0,10,for(k=0,10,print1(T(n,k),", "));print(""))
A113080
Square table, read by antidiagonals, where T(n,k) equals the number of k-tournament sequences of length n for k>=1, with T(0,k) = 1 for k>=1 and T(n,1) = 0 for n>0.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 2, 2, 1, 0, 7, 10, 3, 1, 0, 41, 114, 27, 4, 1, 0, 397, 2970, 693, 56, 5, 1, 0, 6377, 182402, 52812, 2704, 100, 6, 1, 0, 171886, 27392682, 12628008, 481376, 8125, 162, 7, 1, 0, 7892642, 10390564242, 9924266772, 337587520, 2918750, 20502, 245, 8
Offset: 1
Table begins:
1,1,1,1,1,1,1,1,1,1,1,1,1,...
0,1,2,3,4,5,6,7,8,9,10,11,...
0,2,10,27,56,100,162,245,352,486,650,...
0,7,114,693,2704,8125,20502,45619,92288,173259,...
0,41,2970,52812,481376,2918750,13399506,50216915,...
0,397,182402,12628008,337587520,4976321250,48633051942,...
0,6377,27392682,9924266772,978162377600,42197834315625,...
0,171886,10390564242,26507035453923,12088945462984960,...
0,7892642,10210795262650,246323730279500082,...
-
{T(n,k)=local(M=matrix(n+1,n+1));for(r=1,n+1, for(c=1,r, M[r,c]=if(r==c,1,if(c>1,(M^k)[r-1,c-1])+(M^k)[r-1,c]))); return((M^(k-1))[n+1,1])}
Showing 1-9 of 9 results.
Comments