cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A093828 Decimal expansion of (3*Pi)/8.

Original entry on oeis.org

1, 1, 7, 8, 0, 9, 7, 2, 4, 5, 0, 9, 6, 1, 7, 2, 4, 6, 4, 4, 2, 3, 4, 9, 1, 2, 6, 8, 7, 2, 9, 8, 1, 3, 5, 8, 1, 5, 7, 3, 9, 3, 8, 5, 2, 4, 7, 6, 5, 6, 6, 4, 6, 8, 2, 8, 6, 5, 6, 0, 4, 2, 2, 2, 1, 1, 5, 4, 3, 1, 1, 5, 2, 3, 5, 7, 3, 2, 8, 3, 7, 4, 4, 8, 5, 5, 1, 3, 0, 5, 9, 5, 0, 3, 2, 9, 3, 9, 0, 0, 4, 9
Offset: 1

Views

Author

Eric W. Weisstein, Apr 16 2004

Keywords

Comments

Area of an astroid with a = 1.

Examples

			1.1780972450961724644234912687298135815739385247656646...
		

Crossrefs

Cf. A161685 (continued fraction). - Harry J. Smith, Jun 18 2009

Programs

  • Magma
    SetDefaultRealField(RealField(110)); R:= RealField(); 3*Pi(R)/8; // G. C. Greubel, Aug 11 2019
    
  • Maple
    evalf[110](3*Pi*(1/8)); # G. C. Greubel, Aug 11 2019
  • Mathematica
    RealDigits[3*Pi/8, 10, 105][[1]] (* G. C. Greubel, Aug 11 2019 *)
  • PARI
    { default(realprecision, 20080); x=3*Pi/8; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b093828.txt", n, " ", d)); } \\ Harry J. Smith, Jun 18 2009
    
  • Sage
    numerical_approx(3*pi/8, digits=110) # G. C. Greubel, Aug 11 2019

Formula

Equals Integral_{x>0} sin(x)^3/x^3. - Jean-François Alcover, Jun 04 2013
From Amiram Eldar, Aug 02 2020: (Start)
Equals arctan(1 + sqrt(2)).
Equals Integral_{x=0..1} x^(3/2)/sqrt(1-x) dx. (End)
Equals Sum_{k>=1} sin(k*Pi/4)/k. - Amiram Eldar, May 30 2021
3*Pi/8 = Sum_{n >= 1} n*(n+1)*2^(n+1)/binomial(2*n+6,n+3) (apply Euler's series transformation to the series representation Pi = 384*Sum_{n >= 1} (-1)^(n+1)*n^2/((4*n^2 - 1)*(4*n^2 - 9)*(4*n^2 - 25)) ). - Peter Bala, Dec 08 2021