A093879 First differences of A004001.
0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0
Offset: 1
Links
- R. J. Mathar, Table of n, a(n) for n = 1..9999
- J. Grytczuk, Another variation on Conway's recursive sequence, Discr. Math. 282 (2004), 149-161.
- D. Newman, Problem E3274, Amer. Math. Monthly, 95 (1988), 555.
Programs
-
Magma
h:=[n le 2 select 1 else Self(Self(n-1)) + Self(n-Self(n-1)): n in [1..160]]; A093879:= func< n | h[n+1] - h[n] >; [A093879(n): n in [1..120]]; // G. C. Greubel, May 19 2024
-
Mathematica
a[1] = a[2] = 1; a[n_] := a[n] = a[a[n - 1]] + a[n - a[n - 1]]; t = Table[a[n], {n, 110}]; Drop[t, 1] - Drop[t, -1] (* Robert G. Wilson v, May 28 2004 *)
-
PARI
{m=106;v=vector(m,j,1);for(n=3,m,a=v[v[n-1]]+v[n-v[n-1]];v[n]=a);for(n=2,m,print1(v[n]-v[n-1],","))}
-
SageMath
@CachedFunction def h(n): return 1 if (n<3) else h(h(n-1)) + h(n - h(n-1)) def A093879(n): return h(n+1) - h(n) [A093879(n) for n in range(1,101)] # G. C. Greubel, May 19 2024
-
Scheme
(define (A093879 n) (- (A004001 (+ 1 n)) (A004001 n))) ;; Code for A004001 given in that entry. - Antti Karttunen, Jan 18 2016
Formula
Extensions
More terms and PARI code from Klaus Brockhaus and Robert G. Wilson v, May 27 2004
Comments