cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094015 Expansion of (1+4*x)/(1-8*x^2).

Original entry on oeis.org

1, 4, 8, 32, 64, 256, 512, 2048, 4096, 16384, 32768, 131072, 262144, 1048576, 2097152, 8388608, 16777216, 67108864, 134217728, 536870912, 1073741824, 4294967296, 8589934592, 34359738368, 68719476736, 274877906944
Offset: 0

Views

Author

Paul Barry, Apr 21 2004

Keywords

Comments

Row sums of triangle A135838. - Gary W. Adamson, Dec 01 2007
Row sums of triangle A152842. - Reinhard Zumkeller, May 01 2014

Crossrefs

Programs

  • Haskell
    a094015 = sum . a152842_row  -- Reinhard Zumkeller, May 01 2014
    
  • Magma
    [2*8^Floor((n-1)/2)*(3+(-1)^n): n in [0..30]]; // G. C. Greubel, Nov 22 2021
    
  • Maple
    a:=n->mul(3-(-1)^j,j=1..n):seq(a(n),n=0..25); # Zerinvary Lajos, Dec 13 2008
  • Mathematica
    Table[8^Floor[n/2]*Mod[4^n, 5], {n, 0, 30}] (* G. C. Greubel, Nov 22 2021 *)
  • Sage
    [8^(n//2)*(4^n%5) for n in (0..30)] # G. C. Greubel, Nov 22 2021

Formula

a(n) = 2^(3*n/2)*(1 + sqrt(2) + (-1)^n*(1 - sqrt(2)))/2.
a(n) = (1/4)*(3 + (-1)^n)*8^floor((n+1)/2). - Paul Barry, Jul 14 2004
a(n) = (1 + sqrt(2))*(2*sqrt(2))^n/2 + (1 - sqrt(2))*(-2*sqrt(2))^n/2. Third binomial transform is A002315 (NSW numbers). - Paul Barry, Jul 17 2004
a(n) = 2^A007494(n). - Paul Barry, Aug 18 2007
a(n) = A016116(n+1)*A000079(n). - R. J. Mathar, Jul 08 2009
a(n+3) = a(n+2)*a(n+1)/a(n). - Reinhard Zumkeller, Mar 04 2011
a(n) = 8^floor(n/2)*A010685(n). - G. C. Greubel, Nov 22 2021