cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094021 Triangle read by rows: T(n,k) is the number of noncrossing forests with n vertices and k components (1<=k<=n).

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 12, 14, 6, 1, 55, 75, 40, 10, 1, 273, 429, 275, 90, 15, 1, 1428, 2548, 1911, 770, 175, 21, 1, 7752, 15504, 13328, 6370, 1820, 308, 28, 1, 43263, 95931, 93024, 51408, 17640, 3822, 504, 36, 1, 246675, 600875, 648945, 406980, 162792, 42840
Offset: 1

Views

Author

Emeric Deutsch, May 31 2004

Keywords

Examples

			From _Andrew Howroyd_, Nov 17 2017: (Start)
Triangle begins:
     1;
     1,     1;
     3,     3,     1;
    12,    14,     6,    1;
    55,    75,    40,   10,    1;
   273,   429,   275,   90,   15,   1;
  1428,  2548,  1911,  770,  175,  21,  1;
  7752, 15504, 13328, 6370, 1820, 308, 28, 1;
(End)
T(3,2)=3 because, with A,B,C denoting the vertices of a triangle, we have the 2-component forests (A,BC), (B,CA) and (C,AB).
		

Crossrefs

Columns k=1..2 are A001764, A026004.
Row sums are A054727.
Cf. A000108.

Programs

  • Maple
    T:=proc(n,k) if k<=n then binomial(n,k-1)*binomial(3*n-2*k-1,n-k)/(2*n-k) else 0 fi end: seq(seq(T(n,k),k=1..n),n=1..11);
  • Mathematica
    T[n_, k_] := If[k <= n, Binomial[n, k-1]*Binomial[3n-2k-1, n-k]/(2n-k), 0];
    Table[T[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jul 06 2018 *)
  • PARI
    T(n,k)=binomial(n, k-1)*binomial(3*n-2*k-1, n-k)/(2*n-k);
    for(n=1, 10, for(k=1, n, print1(T(n, k), ", ")); print); \\ Andrew Howroyd, Nov 17 2017

Formula

T(n, k) = binomial(n, k-1)*binomial(3n-2k-1, n-k)/(2n-k).
G.f.: G=G(t, z) satisfies G^3+(t^3*z^2-t^2*z-3)G^2+(t^2*z+3)G-1=0.
From Peter Bala, Nov 07 2015: (Start)
O.g.f. A(x,t) = revert( x/((1 + x*t)*C(x)) ) with respect to x, where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f for the Catalan numbers A000108.
Row sums are A054727. (End)