cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094028 Expansion of 1/((1-x)*(1-100*x)).

Original entry on oeis.org

1, 101, 10101, 1010101, 101010101, 10101010101, 1010101010101, 101010101010101, 10101010101010101, 1010101010101010101, 101010101010101010101, 10101010101010101010101, 1010101010101010101010101, 101010101010101010101010101, 10101010101010101010101010101
Offset: 0

Views

Author

Paul Barry, Apr 22 2004

Keywords

Comments

Regarded as binary numbers and converted to decimal, these become 1,5,21,85,... the partial sums of 4^n (see A002450).
Partial sums of 100^n.
Odd terms of A056830. - Alexandre Wajnberg, May 31 2005
101 is the only term that is prime, since (100^k-1)/99 = (10^k+1)/11 * (10^k-1)/9. When k is odd and not 1, (10^k+1)/11 is an integer > 1 and thus (100^k-1)/99 is nonprime. When k is even and greater than 2, (100^k-1)/99 has the prime factor 101 and is nonprime. - Felix Fröhlich, Oct 17 2015
Previous comment is the answer to the problem A1 proposed during the 50th Putnam Competition in 1989 (link). - Bernard Schott, Mar 24 2023

Examples

			From _Omar E. Pol_, Dec 13 2008: (Start)
=======================
n ....... a(n)
0 ........ 1
1 ....... 101
2 ...... 10101
3 ..... 1010101
4 .... 101010101
5 ... 10101010101
======================
(End)
		

References

  • Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
  • Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

Bisection of A147759. [Omar E. Pol, Nov 13 2008]
Cf. similar sequences of the form (k^n-1)/(k-1) listed in A269025.

Programs

  • Magma
    [1+100*(100^n-1)/99 : n in [0..15]]; // Wesley Ivan Hurt, Oct 17 2015
    
  • Maple
    A094028:=n->1+100*(100^n-1)/99: seq(A094028(n), n=0..15); # Wesley Ivan Hurt, Oct 17 2015
  • Mathematica
    CoefficientList[Series[1/((1-x)(1-100x)),{x,0,20}],x] (* or *) Table[ FromDigits[ PadRight[{},2n-1,{1,0}]],{n,20}] (* or *) LinearRecurrence[ {101,-100},{1,101},20] (* or *) NestList[100#+1&,1,20] (* Harvey P. Dale, Apr 27 2015 *)
  • Maxima
    A094028(n):=1+100*(100^n-1)/99$
    makelist(A094028(n),n,0,30); /* Martin Ettl, Nov 06 2012 */
    
  • PARI
    a(n) = 1+100*(100^n-1)/99 \\ Felix Fröhlich, Oct 17 2015
    
  • PARI
    Vec(1/((1-x)*(1-100*x)) + O(x^100)) \\ Altug Alkan, Oct 17 2015

Formula

G.f.: 1/((1-x)*(1-100*x)).
a(n) = 1 + 100*(100^n-1)/99. - N. J. A. Sloane, Apr 20 2008
a(n) = 100^(n+1)/99 - 1/99.
a(n) = A094027(2*n+1).
a(n) = 100*a(n-1) + 1, a(0) = 1. - Philippe Deléham, Feb 22 2014
a(n) = 101*a(n-1) - 100*a(n-2) for n > 1. - Wesley Ivan Hurt, Oct 17 2015
a(n) = (100^(n+1) - 1)/99. - Bernard Schott, Apr 15 2021
E.g.f.: exp(x)*(100*exp(99*x) - 1)/99. - Elmo R. Oliveira, Mar 06 2025