A094028 Expansion of 1/((1-x)*(1-100*x)).
1, 101, 10101, 1010101, 101010101, 10101010101, 1010101010101, 101010101010101, 10101010101010101, 1010101010101010101, 101010101010101010101, 10101010101010101010101, 1010101010101010101010101, 101010101010101010101010101, 10101010101010101010101010101
Offset: 0
Examples
From _Omar E. Pol_, Dec 13 2008: (Start) ======================= n ....... a(n) 0 ........ 1 1 ....... 101 2 ...... 10101 3 ..... 1010101 4 .... 101010101 5 ... 10101010101 ====================== (End)
References
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 60.
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
Links
- Robert Price, Table of n, a(n) for n = 0..999
- Kiran S. Kedlaya, The 50th William Lowell Putnam Mathematical Competition, Problem A1, Dec 02 1989.
- J. V. Leyendekkers and A.G. Shannon, Modular Rings and the Integer 3, Notes on Number Theory & Discrete Mathematics, 17 (2011), pp. 47-51.
- Robert Price, Comments on A094028 concerning Elementary Cellular Automata, Feb 21 2016.
- Eric Weisstein's World of Mathematics, Elementary Cellular Automaton.
- Stephen Wolfram, A New Kind of Science.
- Index to Elementary Cellular Automata.
- Index entries for sequences related to cellular automata.
- Index entries for linear recurrences with constant coefficients, signature (101,-100).
- Index to sequences related to Olympiads and other Mathematical Competitions.
Crossrefs
Programs
-
Magma
[1+100*(100^n-1)/99 : n in [0..15]]; // Wesley Ivan Hurt, Oct 17 2015
-
Maple
A094028:=n->1+100*(100^n-1)/99: seq(A094028(n), n=0..15); # Wesley Ivan Hurt, Oct 17 2015
-
Mathematica
CoefficientList[Series[1/((1-x)(1-100x)),{x,0,20}],x] (* or *) Table[ FromDigits[ PadRight[{},2n-1,{1,0}]],{n,20}] (* or *) LinearRecurrence[ {101,-100},{1,101},20] (* or *) NestList[100#+1&,1,20] (* Harvey P. Dale, Apr 27 2015 *)
-
Maxima
A094028(n):=1+100*(100^n-1)/99$ makelist(A094028(n),n,0,30); /* Martin Ettl, Nov 06 2012 */
-
PARI
a(n) = 1+100*(100^n-1)/99 \\ Felix Fröhlich, Oct 17 2015
-
PARI
Vec(1/((1-x)*(1-100*x)) + O(x^100)) \\ Altug Alkan, Oct 17 2015
Formula
G.f.: 1/((1-x)*(1-100*x)).
a(n) = 1 + 100*(100^n-1)/99. - N. J. A. Sloane, Apr 20 2008
a(n) = 100^(n+1)/99 - 1/99.
a(n) = A094027(2*n+1).
a(n) = 100*a(n-1) + 1, a(0) = 1. - Philippe Deléham, Feb 22 2014
a(n) = 101*a(n-1) - 100*a(n-2) for n > 1. - Wesley Ivan Hurt, Oct 17 2015
a(n) = (100^(n+1) - 1)/99. - Bernard Schott, Apr 15 2021
E.g.f.: exp(x)*(100*exp(99*x) - 1)/99. - Elmo R. Oliveira, Mar 06 2025
Comments