A094057 Number of decimal digits of Lucas(2^n).
1, 1, 1, 2, 4, 7, 14, 27, 54, 108, 215, 429, 857, 1713, 3425, 6849, 13697, 27393, 54785, 109570, 219140, 438279, 876558, 1753116, 3506231, 7012462, 14024924, 28049847, 56099693, 112199386, 224398771, 448797541, 897595081, 1795190161, 3590380321, 7180760642, 14361521283
Offset: 0
Examples
a(5)=7, as L(2^5)=L(32)=4870847 and has seven digits.
Links
- Hans J. H. Tuenter, Table of n, a(n) for n = 0..100
Programs
-
PARI
a(n) = length(Str(fibonacci(2^(n+1))/fibonacci(2^n))); \\ adapted to new name by Michel Marcus, Jul 24 2025
Formula
a(n) = 1+floor(2^n*log_10(phi)), where phi=(1+sqrt(5))/2, the golden ratio. - Hans J. H. Tuenter, Jul 23 2025
a(n) = 1 + Sum_{i=0..n} d(i)*2^(n-i), where d(i) is the i-th digit in the binary expansion of log_10(phi). - Hans J. H. Tuenter, Jul 24 2025
Extensions
More terms from Jason Earls, Apr 30 2004
a(23)-a(36) from Arkadiusz Wesolowski, Jul 20 2012
Name edited and a(0)=1 inserted by Hans J. H. Tuenter, Jul 23 2025
Comments