cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094057 Number of decimal digits of Lucas(2^n).

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 14, 27, 54, 108, 215, 429, 857, 1713, 3425, 6849, 13697, 27393, 54785, 109570, 219140, 438279, 876558, 1753116, 3506231, 7012462, 14024924, 28049847, 56099693, 112199386, 224398771, 448797541, 897595081, 1795190161, 3590380321, 7180760642, 14361521283
Offset: 0

Views

Author

Matthijs Coster, Apr 29 2004

Keywords

Comments

a(n+1) is the number of decimal digits of A001566(n).
From Hans J. H. Tuenter, Jul 24 2025: (Start)
This sequence can be constructed by taking the first n digits of the binary expansion of
alpha = log_10(phi) = 0.00110 10110 00000 00011 ...
For example, expressing a(n)-1 in binary notation, gives
a(0)-1 = 0,
a(1)-1 = 0,
a(2)-1 = 0,
a(3)-1 = 1,
a(4)-1 = 11,
a(5)-1 = 110,
a(6)-1 = 1101,
a(7)-1 = 11010.
Another way of deriving the sequence is by the recurrence a(n+1)=2a(n)-1+d(n+1), with initial value a(0)=1, and d(n) the n-th digit in the binary expansion of alpha.
a(0) = 1,
a(1) = 2*1-1+0=1,
a(2) = 2*1-1+0=1,
a(3) = 2*1-1+1=2,
a(4) = 2*2-1+1=4,
a(5) = 2*4-1+0=7,
a(6) = 2*7-1+1=14,
a(7) = 2*14-1+0=27.
Alternatively, a(n) provides a encoding of the digits in the binary expansion of alpha,
d(n) = a(n)+1-2a(n-1). (End)

Examples

			a(5)=7, as L(2^5)=L(32)=4870847 and has seven digits.
		

Crossrefs

Programs

  • PARI
    a(n) = length(Str(fibonacci(2^(n+1))/fibonacci(2^n))); \\ adapted to new name by Michel Marcus, Jul 24 2025

Formula

a(n) = 1+floor(2^n*log_10(phi)), where phi=(1+sqrt(5))/2, the golden ratio. - Hans J. H. Tuenter, Jul 23 2025
a(n) = 1 + Sum_{i=0..n} d(i)*2^(n-i), where d(i) is the i-th digit in the binary expansion of log_10(phi). - Hans J. H. Tuenter, Jul 24 2025

Extensions

More terms from Jason Earls, Apr 30 2004
a(23)-a(36) from Arkadiusz Wesolowski, Jul 20 2012
Name edited and a(0)=1 inserted by Hans J. H. Tuenter, Jul 23 2025