A094088 E.g.f. 1/(2-cosh(x)) (even coefficients).
1, 1, 7, 121, 3907, 202741, 15430207, 1619195761, 224061282907, 39531606447181, 8661323866026007, 2307185279184885001, 734307168916191403507, 275199311597682485597221, 119956934012963778952439407
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..235 (terms 0..40 from Peter Luschny)
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014-2020.
Programs
-
Maple
f:=proc(n,k) option remember; local i; if n=0 then 1 else k*add(binomial(2*n,2*i)*f(n-i,k),i=1..floor(n)); fi; end; g:=k->[seq(f(n,k),n=0..40)];g(1); # N. J. A. Sloane, Mar 28 2012
-
Mathematica
nn=30;Select[Range[0,nn]!CoefficientList[Series[1/(2-Cosh[x]),{x,0,nn}],x],#>0&] (* Geoffrey Critzer, Dec 03 2012 *) a[0]=1; a[n_] := Sum[1/2*(1+(-1)^(2*n))*Sum[((-1)^(k-j)*Binomial[k, j]*Sum[(j-2*i )^(2*n)*Binomial[j, i], {i, 0, j}])/2^j, {j, 1, k}], {k, 1, n}]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
-
Maxima
a(n):=b(2*n+2); b(n):=sum(((sum(((sum((j-2*i)^n*binomial(j,i),i,0,j))*(-1)^(k-j)*binomial(k,j))/2^(j),j,1,k))*((-1)^n+1))/2,k,1,n/2); /* Vladimir Kruchinin, Apr 23 2011 */
-
Maxima
a(n):=sum(sum((i-k)^(2*n)*binomial(2*k,i)*(-1)^(i),i,0,k-1)/(2^(k-1)),k,1,2*n); /* Vladimir Kruchinin, Oct 05 2012 */
-
PARI
a(n) = if (n == 0, 1, sum(k=1, n, binomial(2*n, 2*n-2*k)*a(n-k)));
-
Sage
def A094088(n) : @CachedFunction def intern(n) : if n == 0 : return 1 if n % 2 != 0 : return 0 return add(intern(k)*binomial(n,k) for k in range(n)[::2]) return intern(2*n) [A094088(n) for n in (0..14)] # Peter Luschny, Jul 14 2012
Formula
1/(2-cosh(x)) = Sum_{n>=0} a(n)x^(2n)/(2n)! = 1 + x^2/2 + 7x^4/24 + 121x^6/720 + ...
Recurrence: a(0)=1, a(n) = Sum_{k=1..n} C(2n, 2n-2k)*a(n-k).
a(0)=1 and, for n>=1, a(n)=b(2*n) where b(n) = sum(k=1..n/2,((sum(j=1..k, ((sum(i=0..j,(j-2*i)^n*binomial(j,i)))*(-1)^(k-j)*binomial(k,j))/2^(j)))*((-1)^n+1))/2). - Vladimir Kruchinin, Apr 23 2011
E.g.f.: 1/(2-cosh(x))=8*(1-x^2)/(8 - 12*x^2 + x^4*U(0)) where U(k)= 1 + 4*(k+1)*(k+2)/(2*k+3 - x^2*(2*k+3)/(x^2 + 8*(k+1)*(k+2)*(k+3)/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 30 2012
a(n) = Sum_{k=1..2*n} ( Sum_{i=0..k-1} (i-k)^(2*n) * binomial(2*k,i) * (-1)^i )/2^(k-1), n>0, a(0)=1. - Vladimir Kruchinin, Oct 05 2012
a(n) ~ 2*(2*n)! /(sqrt(3) * (log(2+sqrt(3)))^(2*n+1)). - Vaclav Kotesovec, Oct 19 2013
Extensions
Corrected definition, Joerg Arndt, Apr 26 2011
Comments