cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A302033 a(n) = A019565(A003188(n)).

Original entry on oeis.org

1, 2, 6, 3, 15, 30, 10, 5, 35, 70, 210, 105, 21, 42, 14, 7, 77, 154, 462, 231, 1155, 2310, 770, 385, 55, 110, 330, 165, 33, 66, 22, 11, 143, 286, 858, 429, 2145, 4290, 1430, 715, 5005, 10010, 30030, 15015, 3003, 6006, 2002, 1001, 91, 182, 546, 273, 1365, 2730, 910, 455, 65, 130, 390, 195, 39, 78, 26, 13, 221, 442, 1326, 663, 3315, 6630, 2210, 1105
Offset: 0

Views

Author

Antti Karttunen & Peter Munn, Apr 16 2018

Keywords

Comments

A squarefree analog of A207901 (and the subsequence consisting of its squarefree terms): Each term is either a divisor or a multiple of the next one, and the terms differ by a single prime factor. Compare also to A284003.
For all n >= 0, max(a(n + 1), a(n)) / min(a(n + 1), a(n)) = A094290(n + 1) = prime(valuation(n + 1, 2) + 1) = A000040(A001511(n + 1)). [See Russ Cox's Dec 04 2010 comment in A007814.] - David A. Corneth & Antti Karttunen, Apr 16 2018

Crossrefs

A permutation of A005117. Subsequence of A207901.
Cf. A302054 (gives the sum of prime divisors).
Cf. also A277811, A283475, A284003.

Programs

  • Mathematica
    Array[Times @@ Prime@ Flatten@ Position[#, 1] &@ Reverse@ IntegerDigits[BitXor[#, Floor[#/2]], 2] &, 72, 0] (* Michael De Vlieger, Apr 27 2018 *)
  • PARI
    A003188(n) = bitxor(n, n>>1);
    A019565(n) = {my(j); factorback(Mat(vector(if(n, #n=vecextract(binary(n), "-1..1")), j, [prime(j), n[j]])~))}; \\ From A019565
    A302033(n) = A019565(A003188(n));
    
  • PARI
    first(n) = {my(pr = primes(1 + logint(n, 2)), ex = vector(#pr, i, 1), res = vector(n)); res[1] = 1; for(i = 1, n-1, v = valuation(i, 2); res[i + 1] = res[i] * pr[v++] ^ ex[v]; ex[v]*=-1); res}

Formula

a(n) = A019565(A003188(n)).
a(n) = A284003(A064706(n)).
a(n+1) = A059897(a(n), A094290(n+1)). - Peter Munn, Apr 01 2019

A115364 a(n) = A000217(A001511(n)), where A001511 is one more than the 2-adic valuation of n, and A000217(n) is the n-th triangular number, binomial(n+1, 2).

Original entry on oeis.org

1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 15, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 21, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 15, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 28, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1, 3, 1, 15, 1, 3, 1, 6, 1, 3, 1, 10, 1, 3, 1, 6, 1
Offset: 1

Views

Author

Paul Barry, Jan 21 2006

Keywords

Comments

Row sums of A115363. In general, the row sums of ((1,x) - m(x,x^2))^(-2) are obtained by following the ruler function A001511(n) by the solution of the recurrence a(1)=1, a(n) = n*m^(n-1) + a(n-1), n > 1.
The Stephan formula says this is the Dirichlet convolution of A000012 with A104117. - R. J. Mathar, Feb 07 2011

Crossrefs

Programs

Formula

a(n) = binomial(A007814(n)+2, 2) = binomial(A001511(n)+1, 2).
Dirichlet g.f.: zeta(s)*(2^s/(2^s-1))^2. - Ralf Stephan, Jun 17 2007
Multiplicative with a(2^k) = A000217(k+1), a(p^k) = 1 for odd primes p. - Antti Karttunen, Nov 02 2018
O.g.f.: Sum_{k >= 1} k*x^(2^(k-1))/(1 - x^(2^(k-1))). More generally, if f(n) is an arithmetic function and g(n) := Sum_{k = 1..n} f(k), then Sum_{k >= 1} f(k)*x^(2^(k-1))/(1 - x^(2^(k-1))) = Sum_{n >= 1} g(A001511(n))*x^n. This is the case f(n) = n. - Peter Bala, Mar 26 2019
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 4. - Amiram Eldar, Oct 22 2022
More precise asymptotics: Sum_{k=1..n} a(k) ~ 4*n - log(n)*(log(n) + 2*log(4*Pi))/(4*log(2)^2). - Vaclav Kotesovec, Jun 25 2024

Extensions

Formula corrected and the name changed by Antti Karttunen, Nov 02 2018
Showing 1-2 of 2 results.