A094304 Sum of all possible sums formed from all but one of the previous terms, starting 1.
1, 0, 1, 4, 18, 96, 600, 4320, 35280, 322560, 3265920, 36288000, 439084800, 5748019200, 80951270400, 1220496076800, 19615115520000, 334764638208000, 6046686277632000, 115242726703104000, 2311256907767808000, 48658040163532800000, 1072909785605898240000
Offset: 1
Keywords
Examples
a(2) = 0 as there is only one previous term and empty sum is taken to be 0. a(4) = (a(1) +a(2))+ (a(1) +a(3)) + (a(2) +a(3)) = (1+0) +(1+1) +(0+1) = 4. a(5) = (a(1)+a(2)+a(3)) +(a(1)+a(2)+ a(4)) +(a(1)+a(3)+a(4)) +(a(2)+a(3)+a(4)) = (1+0+1) +(1+0+4) +(1+1+4) +(0+1+4) = 2 + 5 + 6 + 5 = 18.
Links
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
Programs
-
Maple
a := n -> (n-2)*(n-2)!: 1,seq(a(n), n=2..23); # Emeric Deutsch, May 01 2008
-
Mathematica
In[2]:= l = {1}; Do[k = Length[l] - 1; p = Plus @@ Flatten[Select[Subsets[l], Length[ # ]==k& ]]; AppendTo[l, p], {n, 20}]; l (* Ryan Propper, May 28 2006 *)
-
PARI
v=vector(30);v[1]=1;v[2]=0;for(n=3,#v,s=0;for(i=1,2^(n-1)-1, vb=binary(i); if(hammingweight(vb)==n-2,s=s+sum(j=1,#vb, if(vb[j], v[n-#vb+j-1]))));v[n]=s;print1(s,",")) /* Ralf Stephan, Sep 22 2013 */
Formula
a(n) = (n-2)!(n-2) for n>=2. - Emeric Deutsch, May 01 2008
G.f.: x*T(0), where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 - (1 -x -2*x*k)*(1 -3*x -2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Nov 10 2013
a(n) = S1(n,1) - S1(n-1,1), where S1 are the unsigned Stirling cycle numbers. - Peter Luschny, Apr 10 2016
a(n) = A122974(n-1,n-1). - Alois P. Heinz, Nov 24 2019
Extensions
Edited by N. J. A. Sloane, May 29 2006
Comments