cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094374 a(n) = (3^n-1)/2 + 2^n.

Original entry on oeis.org

1, 3, 8, 21, 56, 153, 428, 1221, 3536, 10353, 30548, 90621, 269816, 805353, 2407868, 7207221, 21588896, 64701153, 193972388, 581655021, 1744440776, 5232273753, 15694724108, 47079978021, 141231545456, 423677859153, 1271000023028, 3812932960221, 11438664662936
Offset: 0

Views

Author

Paul Barry, Apr 28 2004

Keywords

Comments

Binomial transform of A094373.
Row sums of A125103. - Paul Barry, Dec 04 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which either 0) x and y are disjoint and for which either x is a subset of y or y is a subset of x, or 1) x and y are disjoint and for which x is not a subset of y and y is not a subset of x, or 2) x = y. - Ross La Haye, Jan 11 2008
a(n) is the number of words of length n over the alphabet {0,1,2} with an even number of occurrences of the substring 01. - Daimon S. Mayorga, Sep 10 2020

Crossrefs

Programs

  • Magma
    [(3^n-1)/2+2^n: n in [0..30]]; // Vincenzo Librandi, Nov 30 2015
    
  • Mathematica
    Table[(3^n-1)/2+2^n,{n,0,30}] (* or *) LinearRecurrence[{6,-11,6},{1,3,8},30] (* Harvey P. Dale, Jul 22 2013 *)
  • PARI
    a(n)=(3^n-1)/2+2^n \\ Charles R Greathouse IV, Oct 16 2015
    
  • SageMath
    [(3^n +2^(n+1) -1)//2 for n in range(31)] # G. C. Greubel, Sep 26 2024

Formula

G.f.: (1-3x+x^2)/((1-x)*(1-2x)*(1-3x)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3).
a(n) = A003462(n) + A000079(n).
a(n) = Sum_{k=0..n} C(n,k)+2^k*C(n,k+1). - Paul Barry, Dec 04 2007
a(n) = StirlingS2(n+1,3) + 2*StirlingS2(n+1,2) + 1. - Ross La Haye, Jan 11 2008
E.g.f.: exp(2*x)*(1 + sinh(x)). - G. C. Greubel, Sep 26 2024