A094420 Generalized ordered Bell numbers Bo(n,n).
1, 1, 10, 219, 8676, 544505, 49729758, 6232661239, 1026912225160, 215270320769109, 55954905981282210, 17662898483917308083, 6655958151527584785900, 2951503248457748982755953, 1521436331153097968932487206, 902143190212525713006814917615, 609729139653483641913607434550800
Offset: 0
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..200
Crossrefs
Programs
-
Magma
A094420:= func< n | (&+[Factorial(k)*n^k*StirlingSecond(n,k): k in [0..n]]) >; [A094420(n): n in [0..25]]; // G. C. Greubel, Jan 12 2024
-
Maple
F := proc(n) option remember; if n = 0 then return 1 fi; expand(add(binomial(n, k)*F(n-k)*x, k=1..n)) end: a := n -> subs(x = n, F(n)): seq(a(n), n = 0..16); # Peter Luschny, May 21 2021
-
Mathematica
Table[Sum[k!*n^k*StirlingS2[n, k], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jul 23 2018 *)
-
PARI
{a(n) = sum(k=0, n, k!*n^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jun 12 2020
-
SageMath
def aList(len): R.
= PowerSeriesRing(QQ) f = lambda n: R(1/(1 + n * (1 - exp(x)))) return [factorial(n)*f(n).list()[n] for n in (0..len-1)] print(aList(17)) # Peter Luschny, May 21 2021
Formula
a(n) ~ sqrt(2*Pi) * n^(2*n + 5/2) / exp(n - 3/2). - Vaclav Kotesovec, Jul 23 2018
a(n) = Sum_{k=0..n} k!*n^k*Stirling2(n, k). - Seiichi Manyama, Jun 12 2020
From Peter Luschny, May 21 2021: (Start)
a(n) = F_{n}(n), the Fubini polynomial F_{n}(x) evaluated at x = n.
a(n) = n! * [x^n] (1 / (1 + n * (1 - exp(x)))). (End)
Extensions
More terms from Seiichi Manyama, Jun 12 2020
Comments