cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094420 Generalized ordered Bell numbers Bo(n,n).

Original entry on oeis.org

1, 1, 10, 219, 8676, 544505, 49729758, 6232661239, 1026912225160, 215270320769109, 55954905981282210, 17662898483917308083, 6655958151527584785900, 2951503248457748982755953, 1521436331153097968932487206, 902143190212525713006814917615, 609729139653483641913607434550800
Offset: 0

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Main diagonal of array A094416.

Crossrefs

The coefficients of the Fubini polynomials are A131689.
Central column of A344499.

Programs

  • Magma
    A094420:= func< n | (&+[Factorial(k)*n^k*StirlingSecond(n,k): k in [0..n]]) >;
    [A094420(n): n in [0..25]]; // G. C. Greubel, Jan 12 2024
  • Maple
    F := proc(n) option remember; if n = 0 then return 1 fi;
    expand(add(binomial(n, k)*F(n-k)*x, k=1..n)) end:
    a := n -> subs(x = n, F(n)):
    seq(a(n), n = 0..16); # Peter Luschny, May 21 2021
  • Mathematica
    Table[Sum[k!*n^k*StirlingS2[n, k], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jul 23 2018 *)
  • PARI
    {a(n) = sum(k=0, n, k!*n^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jun 12 2020
    
  • SageMath
    def aList(len):
        R. = PowerSeriesRing(QQ)
        f = lambda n: R(1/(1 + n * (1 - exp(x))))
        return [factorial(n)*f(n).list()[n] for n in (0..len-1)]
    print(aList(17)) # Peter Luschny, May 21 2021
    

Formula

a(n) ~ sqrt(2*Pi) * n^(2*n + 5/2) / exp(n - 3/2). - Vaclav Kotesovec, Jul 23 2018
a(n) = Sum_{k=0..n} k!*n^k*Stirling2(n, k). - Seiichi Manyama, Jun 12 2020
From Peter Luschny, May 21 2021: (Start)
a(n) = F_{n}(n), the Fubini polynomial F_{n}(x) evaluated at x = n.
a(n) = n! * [x^n] (1 / (1 + n * (1 - exp(x)))). (End)

Extensions

More terms from Seiichi Manyama, Jun 12 2020