cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A094416 Array read by antidiagonals: generalized ordered Bell numbers Bo(r,n).

Original entry on oeis.org

1, 2, 3, 3, 10, 13, 4, 21, 74, 75, 5, 36, 219, 730, 541, 6, 55, 484, 3045, 9002, 4683, 7, 78, 905, 8676, 52923, 133210, 47293, 8, 105, 1518, 19855, 194404, 1103781, 2299754, 545835, 9, 136, 2359, 39390, 544505, 5227236, 26857659, 45375130, 7087261
Offset: 1

Views

Author

Ralf Stephan, May 02 2004

Keywords

Comments

Also, r times the number of (r+1)-level labeled linear rooted trees with n leaves.
"AIJ" (ordered, indistinct, labeled) transform of {r,r,r,...}.
Stirling transform of r^n*n!, i.e. of e.g.f. 1/(1-r*x).
Also, Bo(r,s) is ((x*d/dx)^n)(1/(1+r-r*x)) evaluated at x=1.
r-th ordered Bell polynomial (A019538) evaluated at n.
Bo(r,n) is the n-th moment of a geometric distribution with probability parameter = 1/(r+1). Here, geometric distribution is the number of failures prior to the first success. - Geoffrey Critzer, Jan 01 2019
Row r (starting at r=0), Bo(r+1, n), is the Akiyama-Tanigawa algorithm applied to the powers of r+1. See Python program below. - Shel Kaphan, May 03 2024

Examples

			Array begins as:
  1,  3,   13,    75,     541,     4683,      47293, ...
  2, 10,   74,   730,    9002,   133210,    2299754, ...
  3, 21,  219,  3045,   52923,  1103781,   26857659, ...
  4, 36,  484,  8676,  194404,  5227236,  163978084, ...
  5, 55,  905, 19855,  544505, 17919055,  687978905, ...
  6, 78, 1518, 39390, 1277646, 49729758, 2258233998, ...
		

Crossrefs

Columns include A014105, A094421.
Main diagonal is A094420.
Antidiagonal sums are A094422.

Programs

  • Magma
    A094416:= func< n,k | (&+[Factorial(j)*n^j*StirlingSecond(k,j): j in [0..k]]) >;
    [A094416(n-k+1,k): k in [1..n], n in [1..12]]; // G. C. Greubel, Jan 12 2024
    
  • Mathematica
    Bo[, 0]=1; Bo[r, n_]:= Bo[r, n]= r*Sum[Binomial[n,k] Bo[r,n-k], {k, n}];
    Table[Bo[r-n+1, n], {r, 10}, {n, r}] // Flatten (* Jean-François Alcover, Nov 03 2018 *)
  • Python
    # The Akiyama-Tanigawa algorithm applied to the powers of r + 1
    # generates the rows. Adds one row (r=0) and one column (n=0).
    # Adapted from Peter Luschny on A371568.
    def f(n, r): return (r + 1)**n
    def ATtransform(r, len, f):
      A = [0] * len
      R = [0] * len
      for n in range(len):
          R[n] = f(n, r)
          for j in range(n, 0, -1):
              R[j - 1] = j * (R[j] - R[j - 1])
          A[n] = R[0]
      return A
    for r in range(8): print([r], ATtransform(r, 8, f)) # Shel Kaphan, May 03 2024
  • SageMath
    def A094416(n,k): return sum(factorial(j)*n^j*stirling_number2(k,j) for j in range(k+1)) # array
    flatten([[A094416(n-k+1,k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Jan 12 2024
    

Formula

E.g.f.: 1/(1 + r*(1 - exp(x))).
Bo(r, n) = Sum_{k=0..n} k!*r^k*Stirling2(n, k) = 1/(r+1) * Sum_{k>=1} k^n * (r/(r+1))^k, for r>0, n>0.
Recurrence: Bo(r, n) = r * Sum_{k=1..n} C(n, k)*Bo(r, n-k), with Bo(r, 0) = 1.
Bo(r,0) = 1, Bo(r,n) = r*Bo(r,n-1) - (r+1)*Sum_{j=1..n-1} (-1)^j * binomial(n-1,j) * Bo(r,n-j). - Seiichi Manyama, Nov 17 2023

Extensions

Offset corrected by Geoffrey Critzer, Jan 01 2019

A317172 a(n) = n! * [x^n] 1/(1 - n*log(1 + x)).

Original entry on oeis.org

1, 1, 6, 114, 4168, 248870, 21966768, 2685571560, 434202400896, 89679267601632, 23032451508686400, 7199033431349412576, 2690461258552995849216, 1184680716090974803461072, 606986901206377433194091520, 358023049940533240478842992000, 240858598980174362552808566194176
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 23 2018

Keywords

Crossrefs

Main diagonal of A320080.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 - n Log[1 + x]), {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[Sum[StirlingS1[n, k] n^k k!, {k, n}], {n, 16}]]
  • PARI
    {a(n) = sum(k=0, n, k!*n^k*stirling(n, k, 1))} \\ Seiichi Manyama, Jun 12 2020

Formula

a(n) = Sum_{k=0..n} Stirling1(n,k)*n^k*k!.
a(n) ~ sqrt(2*Pi) * n^(2*n + 1/2) / exp(n + 1/2). - Vaclav Kotesovec, Jul 23 2018

A321189 a(n) = n! * [x^n] 1 - 1/(n - 1/(exp(x) - 1)).

Original entry on oeis.org

1, 1, 5, 73, 2169, 108901, 8288293, 890380177, 128364028145, 23918924529901, 5595490598128221, 1605718043992482553, 554663179293965398825, 227038711419826844827381, 108674023653792712066606229, 60142879347501714200454327841, 38108071228342727619600464659425
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 29 2018

Keywords

Crossrefs

Main diagonal of A257565.

Programs

  • GAP
    Concatenation([1],List([1..16],n->Sum([1..n],k->Stirling2(n,k)*Factorial(k)*n^(k-1)))); # Muniru A Asiru, Oct 29 2018
    
  • Maple
    seq(coeff(series(factorial(n)*(1-1/(n-1/(exp(x)-1))),x,n+1), x, n), n = 0 .. 15); # Muniru A Asiru, Oct 29 2018
    # Or, using the recurrence of the Fubini polynomials:
    F := proc(n) option remember; if n = 0 then return 1 fi;
    expand(add(binomial(n, k)*F(n-k)*x, k = 1..n)) end:
    a := n -> `if`(n=0, 1, subs(x = n, F(n)) / n):
    seq(a(n), n = 0..16);  # Peter Luschny, May 21 2021
  • Mathematica
    Table[n! SeriesCoefficient[1 - 1/(n - 1/(Exp[x] - 1)), {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[Sum[StirlingS2[n, k] k! n^(k - 1), {k, n}], {n, 16}]]
  • PARI
    {a(n) = if(n==0, 1, sum(k=0, n, k!*n^(k-1)*stirling(n, k, 2)))} \\ Seiichi Manyama, Jun 12 2020

Formula

a(0) = 1; a(n) = Sum_{k=1..n} Stirling2(n, k)*k!*n^(k-1).
a(n) = A257565(n, n).
From Vaclav Kotesovec, Oct 29 2018: (Start)
a(n) ~ exp(1/2) * n! * n^(n-1).
a(n) ~ sqrt(2*Pi) * n^(2*n - 1/2) / exp(n - 1/2). (End)
a(n) = F_{n}(n) / n for n >= 1, where F_{n}(x) is the Fubini polynomial. In other words: a(n) = A094420(n) / n for n >= 1. - Peter Luschny, May 21 2021

A344499 T(n, k) = F(n - k, k), where F(n, x) is the Fubini polynomial. Triangle read by rows, T(n, k) for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 2, 1, 0, 13, 10, 3, 1, 0, 75, 74, 21, 4, 1, 0, 541, 730, 219, 36, 5, 1, 0, 4683, 9002, 3045, 484, 55, 6, 1, 0, 47293, 133210, 52923, 8676, 905, 78, 7, 1, 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1, 0, 7087261, 45375130, 26857659, 5227236, 544505, 39390, 2359, 136, 9, 1
Offset: 0

Views

Author

Peter Luschny, May 21 2021

Keywords

Comments

The array rows are recursively generated by applying the Akiyama-Tanigawa algorithm to the powers (see the Python implementation below). In this way the array becomes the image of A004248 under the AT-transformation when applied to the columns of A004248. This makes the array closely linked to A371761, which is generated in the same way, but applied to the rows of A004248. - Peter Luschny, Apr 27 2024

Examples

			Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1,      1;
[3] 0, 3,      2,       1;
[4] 0, 13,     10,      3,       1;
[5] 0, 75,     74,      21,      4,      1;
[6] 0, 541,    730,     219,     36,     5,     1;
[7] 0, 4683,   9002,    3045,    484,    55,    6,    1;
[8] 0, 47293,  133210,  52923,   8676,   905,   78,   7,   1;
[9] 0, 545835, 2299754, 1103781, 194404, 19855, 1518, 105, 8, 1;
.
Seen as an array A(n, k) = T(n + k, n):
[0] [1, 0,   0,    0,     0,       0,         0, ...  A000007
[1] [1, 1,   3,   13,    75,     541,      4683, ...  A000670
[2] [1, 2,  10,   74,   730,    9002,    133210, ...  A004123
[3] [1, 3,  21,  219,  3045,   52923,   1103781, ...  A032033
[4] [1, 4,  36,  484,  8676,  194404,   5227236, ...  A094417
[5] [1, 5,  55,  905, 19855,  544505,  17919055, ...  A094418
[6] [1, 6,  78, 1518, 39390, 1277646,  49729758, ...  A094419
[7] [1, 7, 105, 2359, 70665, 2646007, 118893705, ...  A238464
		

Crossrefs

Variant of the array is A094416 (which has column 0 and row 0 missing).
The coefficients of the Fubini polynomials are A131689.
Cf. A094420 (main diagonal of array), A372346 (row sums), A004248, A371761.

Programs

  • Maple
    F := proc(n) option remember; if n = 0 then return 1 fi:
    expand(add(binomial(n, k)*F(n - k)*x, k = 1..n)) end:
    seq(seq(subs(x = k, F(n - k)), k = 0..n), n = 0..10);
  • Mathematica
    F[n_] := F[n] = If[n == 0, 1,
       Expand[Sum[Binomial[n, k]*F[n - k]*x, {k, 1, n}]]];
    Table[Table[F[n - k] /. x -> k, {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Jun 06 2024, after Peter Luschny *)
  • SageMath
    # Computes the triangle.
    @cached_function
    def F(n):
        R. = PolynomialRing(ZZ)
        if n == 0: return R(1)
        return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
    def Fval(n): return [F(n - k).substitute(x = k) for k in (0..n)]
    for n in range(10): print(Fval(n))
    
  • SageMath
    # Computes the square array using the Akiyama-Tanigawa algorithm.
    def ATFubini(n, len):
        A = [0] * len
        R = [0] * len
        for k in range(len):
            R[k] = (n + 1)**k  # Chancing this to R[k] = k**n generates A371761.
            for j in range(k, 0, -1):
                R[j - 1] = j * (R[j] - R[j - 1])
            A[k] = R[0]
        return A
    for n in range(8): print([n], ATFubini(n, 7))  # Peter Luschny, Apr 27 2024

Formula

T(n, k) = (n - k)! * [x^(n - k)] (1 / (1 + k * (1 - exp(x)))).
T(2*n, n) = A094420(n).

A317171 a(n) = n! * [x^n] 1/(1 + n*log(1 - x)).

Original entry on oeis.org

1, 1, 10, 222, 8824, 553870, 50545008, 6328330344, 1041597412224, 218138133235680, 56650689388344000, 17868469522986145536, 6728682216722958185472, 2981868816113406609186576, 1536217706761623823662025728, 910442461680276910819097616000, 615053979239579281793375485526016
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 23 2018

Keywords

Crossrefs

Main diagonal of A320079.

Programs

  • Mathematica
    Table[n! SeriesCoefficient[1/(1 + n Log[1 - x]), {x, 0, n}], {n, 0, 16}]
    Join[{1}, Table[Sum[Abs[StirlingS1[n, k]] n^k k!, {k, n}], {n, 16}]]

Formula

a(n) = Sum_{k=0..n} |Stirling1(n,k)|*n^k*k!.
a(n) ~ sqrt(2*Pi) * n^(2*n + 1/2) / exp(n - 1/2). - Vaclav Kotesovec, Jul 23 2018

A331690 a(n) = Sum_{k=0..n} Stirling2(n,k) * k! * n^(n - k).

Original entry on oeis.org

1, 1, 4, 33, 456, 9445, 272448, 10386817, 503758720, 30202999821, 2189000524800, 188349613075393, 18954958449853440, 2203304642871358741, 292675996808408743936, 44022321302156791898625, 7438113993194856900034560, 1401876939543892434209075581
Offset: 0

Views

Author

Ilya Gutkovskiy, Jan 24 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[StirlingS2[n, k] k! n^(n - k), {k, 0, n}], {n, 1, 17}]]
    Table[SeriesCoefficient[Sum[k! x^k/Product[(1 - n j x), {j, 1, k}], {k, 0, n}], {x, 0, n}], {n, 0, 17}]
    Join[{1}, Table[n^(n + 1) PolyLog[-n, 1/(n + 1)]/(n + 1), {n, 1, 17}]]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 2)*k!*n^(n-k)); \\ Michel Marcus, Jan 24 2020

Formula

a(n) = [x^n] Sum_{k>=0} k! * x^k / Product_{j=1..k} (1 - n*j*x).
a(n) = n! * [x^n] n / (1 + n - exp(n*x)) for n > 0.
a(n) = n^(n + 1) * Sum_{k>=1} k^n / (n + 1)^(k + 1) for n > 0.
a(n) ~ n! * n^(n+1) / ((n+1) * log(n+1)^(n+1)). - Vaclav Kotesovec, Jun 06 2022

A352074 a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * (-n)^(n-k).

Original entry on oeis.org

1, 1, 4, 42, 904, 34070, 2019888, 174588120, 20804747136, 3276218158560, 659664288364800, 165425062846302336, 50574549124825998336, 18520126461205806360144, 8003819275469728355033088, 4031020344281171589447408000, 2340375822778055527109749211136
Offset: 0

Views

Author

Ilya Gutkovskiy, Mar 02 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[Sum[StirlingS1[n, k] k! (-n)^(n - k), {k, 0, n}], {n, 0, 16}]
    Join[{1}, Table[n! SeriesCoefficient[1/(1 + Log[1 - n x]/n), {x, 0, n}], {n, 1, 16}]]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1)*k!*(-n)^(n-k)); \\ Michel Marcus, Mar 02 2022

Formula

a(n) = n! * [x^n] 1 / (1 + log(1 - n*x) / n) for n > 0.
a(n) ~ n! * n^(n-2) * (1 + 2*log(n)/n). - Vaclav Kotesovec, Mar 03 2022

A354752 a(n) = Sum_{k=0..n} Stirling1(n,k) * k! * n^(n-k).

Original entry on oeis.org

1, 1, 0, 6, -152, 6670, -451152, 43685208, -5741360256, 984176280288, -213379094227200, 57100689621382176, -18489130293293779968, 7125765731670143814672, -3223822934974620319272960, 1692009521117003600170128000, -1019755541584493644326799048704
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 06 2022

Keywords

Crossrefs

Programs

  • Mathematica
    Unprotect[Power]; 0^0 = 1; Table[Sum[StirlingS1[n, k] k! n^(n - k), {k, 0, n}], {n, 0, 16}]
    Join[{1}, Table[n! SeriesCoefficient[1/(1 - Log[1 + n x]/n), {x, 0, n}], {n, 1, 16}]]
  • PARI
    a(n) = sum(k=0, n, stirling(n, k, 1) * k! * n^(n-k)); \\ Michel Marcus, Jun 06 2022

Formula

a(n) = n! * [x^n] 1 / (1 - log(1 + n*x) / n) for n > 0.
a(n) ~ (-1)^(n+1) * n! * n^(n-2). - Vaclav Kotesovec, Jun 06 2022

A331345 a(n) = (1/n^2) * Sum_{k>=1} k^n * (1 - 1/n)^(k - 1).

Original entry on oeis.org

1, 3, 37, 1015, 48601, 3583811, 376372333, 53343571695, 9808511445361, 2270198126932219, 645790373135121061, 221449391959470686375, 90084675298978081317961, 42890688646618728144279987, 23627228721958495690763944861, 14910259060767841554203065990111
Offset: 1

Views

Author

Ilya Gutkovskiy, Jun 08 2020

Keywords

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[1/n^2 Sum[k^n (1 - 1/n)^(k - 1), {k, 1, Infinity}], {n, 2, 16}]]
    Table[n! SeriesCoefficient[(Exp[x] - 1)/(Exp[x] - n (Exp[x] - 1)), {x, 0, n}], {n, 1, 16}]

Formula

a(n) = n! * [x^n] (exp(x) - 1) / (exp(x) - n * (exp(x) - 1)).
a(n) = Sum_{k=1..n} Stirling2(n,k) * (n - 1)^(k - 1) * k!.
a(n) ~ sqrt(2*Pi) * n^(2*n - 1/2) / exp(n + 1/2). - Vaclav Kotesovec, Jun 08 2020

A344398 a(n) = (-1)^n * F_{n}((-1)^n * n), where F_{n}(x) is the Fubini polynomial.

Original entry on oeis.org

1, 1, 10, 111, 8676, 243005, 49729758, 2634606331, 1026912225160, 88276603008249, 55954905981282210, 7103694104486331671, 6655958151527584785900, 1171100778886715057133493, 1521436331153097968932487206, 354408430829377435361459172915, 609729139653483641913607434550800
Offset: 0

Views

Author

Peter Luschny, May 21 2021

Keywords

Crossrefs

The coefficients of the Fubini polynomials are A131689.
Cf. A094420.

Programs

  • Maple
    F := proc(n) option remember; if n = 0 then return 1 fi;
    expand(add(binomial(n, k)*F(n-k)*x, k = 1..n)) end:
    a := n -> (-1)^n*subs(x = (-1)^n*n, F(n)):
    seq(a(n), n = 0..17);
  • Mathematica
    F[n_][x_] := If[n == 0, 1, Sum[k! StirlingS2[n, k] x^k, {k, 0, n}]];
    a[n_] := (-1)^n F[n][(-1)^n*n];
    Table[a[n], {n, 0, 16}] (* Jean-François Alcover, May 09 2024 *)
  • SageMath
    @cached_function
    def F(n):
        R. = PolynomialRing(ZZ)
        if n == 0: return R(1)
        return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
    def a(n):
        return (-1)^n*F(n).substitute(x = (-1)^n*n)
    print([a(n) for n in range(17)])
Showing 1-10 of 10 results.