A094420
Generalized ordered Bell numbers Bo(n,n).
Original entry on oeis.org
1, 1, 10, 219, 8676, 544505, 49729758, 6232661239, 1026912225160, 215270320769109, 55954905981282210, 17662898483917308083, 6655958151527584785900, 2951503248457748982755953, 1521436331153097968932487206, 902143190212525713006814917615, 609729139653483641913607434550800
Offset: 0
The coefficients of the Fubini polynomials are
A131689.
-
A094420:= func< n | (&+[Factorial(k)*n^k*StirlingSecond(n,k): k in [0..n]]) >;
[A094420(n): n in [0..25]]; // G. C. Greubel, Jan 12 2024
-
F := proc(n) option remember; if n = 0 then return 1 fi;
expand(add(binomial(n, k)*F(n-k)*x, k=1..n)) end:
a := n -> subs(x = n, F(n)):
seq(a(n), n = 0..16); # Peter Luschny, May 21 2021
-
Table[Sum[k!*n^k*StirlingS2[n, k], {k, 0, n}], {n, 1, 20}] (* Vaclav Kotesovec, Jul 23 2018 *)
-
{a(n) = sum(k=0, n, k!*n^k*stirling(n, k, 2))} \\ Seiichi Manyama, Jun 12 2020
-
def aList(len):
R. = PowerSeriesRing(QQ)
f = lambda n: R(1/(1 + n * (1 - exp(x))))
return [factorial(n)*f(n).list()[n] for n in (0..len-1)]
print(aList(17)) # Peter Luschny, May 21 2021
A335529
a(n) = n! * [x^n] (1 - (n-1)*log(1 + x))/(1 - n*log(1 + x)).
Original entry on oeis.org
1, 1, 3, 38, 1042, 49774, 3661128, 383653080, 54275300112, 9964363066848, 2303245150868640, 654457584668128416, 224205104879416320768, 91129285853151907958544, 43356207229026959513863680, 23868203329368882698589532800, 15053662436260897659550535387136
Offset: 0
-
a[0] = 1; a[n_] := Sum[k! * n^(k - 1) * StirlingS1[n, k], {k, 0, n}]; Array[a, 17, 0] (* Amiram Eldar, Jun 12 2020 *)
-
{a(n) = if(n==0, 1, sum(k=0, n, k!*n^(k-1)*stirling(n, k, 1)))}
A369435
Square array A(n, k) = n! * [t^n] (exp(t)/(1+k-k*exp(t))) for n >= 0 and k >= 0, read by antidiagonals upwards.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 26, 15, 4, 1, 1, 150, 111, 28, 5, 1, 1, 1082, 1095, 292, 45, 6, 1, 1, 9366, 13503, 4060, 605, 66, 7, 1, 1, 94586, 199815, 70564, 10845, 1086, 91, 8, 1, 1, 1091670, 3449631, 1471708, 243005, 23826, 1771, 120, 9, 1, 1, 14174522, 68062695, 35810212, 6534045, 653406, 45955, 2696, 153, 10, 1
Offset: 0
Array A(n, k) starts:
n\k : 0 1 2 3 4 5 6 7 8
================================================================================
0 : 1 1 1 1 1 1 1 1 1
1 : 1 2 3 4 5 6 7 8 9
2 : 1 6 15 28 45 66 91 120 153
3 : 1 26 111 292 605 1086 1771 2696 3897
4 : 1 150 1095 4060 10845 23826 45955 80760 132345
5 : 1 1082 13503 70564 243005 653406 1490587 3024008 5618169
6 : 1 9366 199815 1471708 6534045 21502866 58018051 135878520 286195833
7 : 1 94586 3449631 35810212
8 : 1 1091670 68062695
9 : 1 14174522
.
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 6, 3, 1;
[4] 1, 26, 15, 4, 1;
[5] 1, 150, 111, 28, 5, 1;
[6] 1, 1082, 1095, 292, 45, 6, 1;
[7] 1, 9366, 13503, 4060, 605, 66, 7, 1;
[8] 1, 94586, 199815, 70564, 10845, 1086, 91, 8, 1;
[9] 1, 1091670, 3449631, 1471708, 243005, 23826, 1771, 120, 9, 1;
-
egf := exp(t) / (1 + x*(1 - exp(t))): sert := series(egf, t, 12):
col := k -> local j; seq(subs(x=k, j!*coeff(sert, t, j)), j=0..9):
T := (n, k) -> col(k)[n - k + 1]: # Triangle
for n from 0 to 9 do seq(T(n, k), k=0..n) od; # Peter Luschny, Jan 24 2024
with(combinat): # WP Worpitzky polynomials, WC coefficients of WP.
WC := (n, k) -> local j; add(eulerian1(n, j)*binomial(n-j, n-k), j=0..n):
WP := n -> local j; add(WC(n, j) * x^j, j=0..n):
A369435row := (n, k) -> subs(x = k, WP(n)):
seq(lprint(seq(A369435row(n, k), k = 0..7)), n = 0..7);
# Peter Luschny, Apr 26 2024
-
{A(n, k) = n! * polcoeff(exp(x+x*O(x^n)) / (1+k-k*exp(x+x*O(x^n))), n)}
A331345
a(n) = (1/n^2) * Sum_{k>=1} k^n * (1 - 1/n)^(k - 1).
Original entry on oeis.org
1, 3, 37, 1015, 48601, 3583811, 376372333, 53343571695, 9808511445361, 2270198126932219, 645790373135121061, 221449391959470686375, 90084675298978081317961, 42890688646618728144279987, 23627228721958495690763944861, 14910259060767841554203065990111
Offset: 1
-
Join[{1}, Table[1/n^2 Sum[k^n (1 - 1/n)^(k - 1), {k, 1, Infinity}], {n, 2, 16}]]
Table[n! SeriesCoefficient[(Exp[x] - 1)/(Exp[x] - n (Exp[x] - 1)), {x, 0, n}], {n, 1, 16}]
Showing 1-4 of 4 results.
Comments