A094475
Primes of form 2^n + 5^n.
Original entry on oeis.org
For n=4, p=2^4+5^4=641, so p can be prime even when the exponent is not a prime.
-
[ a: n in [0..2100] | IsPrime(a) where a is 5^n+2^n]; // Vincenzo Librandi, Nov 18 2010
-
Select[Table[2^n+5^n,{n,0,5000}],PrimeQ] (* Harvey P. Dale, May 28 2014 *)
A094477
Primes of form 2^n + 37^n.
Original entry on oeis.org
2, 1373, 1874177, 23169162752708970943114627382699355445603465075569066753527132965271355336698663708393617779709970177
Offset: 1
No more terms for n < 1000, so the next term will be too large to include. -
Hugo Pfoertner, Aug 17 2004
A386618
Primes of the form 2^k + 13^k.
Original entry on oeis.org
2, 173, 815730977
Offset: 1
-
[a: n in [0..200] | IsPrime(a) where a is 13^n+2^n ];
-
Select[Table[2^n+13^n,{n,0,600}],PrimeQ]
Showing 1-3 of 3 results.
Comments