cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A074600 a(n) = 2^n + 5^n.

Original entry on oeis.org

2, 7, 29, 133, 641, 3157, 15689, 78253, 390881, 1953637, 9766649, 48830173, 244144721, 1220711317, 6103532009, 30517610893, 152587956161, 762939584197, 3814697527769, 19073486852413, 95367432689201, 476837160300277
Offset: 0

Views

Author

Robert G. Wilson v, Aug 25 2002

Keywords

Comments

Digital root of a(n) is A010697(n). - Peter M. Chema, Oct 24 2016

References

  • Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015. See page 14.

Crossrefs

Programs

Formula

a(n) = 5*a(n-1)-3*2^(n-1) = 7*a(n-1)- 10*a(n-2). [Corrected by Zak Seidov, Oct 24 2009]
G.f.: 1/(1-2*x)+1/(1-5*x). E.g.f.: e^(2*x)+e^(5*x). - Mohammad K. Azarian, Jan 02 2009

A294133 Sorted list of prime factors of numbers of the form 5^(2^m) + 2^(2^m) with m >= 0.

Original entry on oeis.org

7, 17, 29, 97, 193, 257, 641, 12289, 22993, 65537, 102593, 115201, 152833, 211457, 993793, 5189633, 26411009, 79280897, 93847553, 167772161, 230686721, 1364951041, 1573071713, 3221225473, 5488091137, 186678460417, 206158430209, 274568286337
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 23 2017

Keywords

Comments

Primes p other than 3 such that the multiplicative order of 5/2 (mod p) is a power of 2.

Crossrefs

Programs

  • PARI
    print1(7, ", "); forprime(p=17, 274568286337, z=znorder(Mod(5/2, p)); if(2^ispower(z)==z, print1(p, ", ")));

A337429 a(n) is the largest prime factor of 2^n + 5^n.

Original entry on oeis.org

2, 7, 29, 19, 641, 41, 541, 1597, 22993, 397, 5521, 303293, 380881, 25117, 210466621, 508771, 1573071713, 108991369171, 1343341, 2724783836059, 39558401, 2525293, 4807441, 215038823, 1173553, 61001, 16463734208221, 3813697527769, 58116853330557841, 327866809, 99901
Offset: 0

Views

Author

Hugo Pfoertner, Sep 23 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := FactorInteger[2^n + 5^n][[-1, 1]]; Array[a, 31, 0] (* Amiram Eldar, Mar 30 2023 *)
  • PARI
    for(n=0,30,my(p=2^n+5^n);print1(vecmax(factor(p)[,1]),", "))

Formula

a(n) = A006530(A074600(n)).

A122118 Least prime factor of 2^n + 5^n.

Original entry on oeis.org

2, 7, 29, 7, 641, 7, 29, 7, 17, 7, 29, 7, 641, 7, 29, 7, 97, 7, 29, 7, 641, 7, 29, 7, 17, 7, 29, 7, 641, 7, 29, 7, 193, 7, 29, 7, 73, 7, 29, 7, 17, 7, 29, 7, 641, 7, 29, 7, 97, 7, 29, 7, 641, 7, 29, 7, 17, 7, 29, 7, 641, 7, 29, 7, 274568286337, 7, 29, 7, 137, 7, 29, 7, 17, 7, 29, 7, 457
Offset: 0

Views

Author

Zak Seidov, Oct 19 2006

Keywords

Comments

a(n_odd)=7, a(n=2+4k,k=0,1,...)=29, a(64)=274568286337 is unusually large.

Crossrefs

Cf. A020639, A074600 (2^n + 5^n), A094475 (primes of form 2^n + 5^n), A122119, A337429.
Cf. also A094473.

Programs

  • Mathematica
    Table[FactorInteger[2^n+5^n][[1,1]],{n,0,80}] (* or *) Riffle[Table[ FactorInteger[2^n+5^n][[1,1]],{n,0,80,2}],7] (* The second program is faster *) (* Harvey P. Dale, Mar 02 2015 *)
  • PARI
    A122118(n) = { my(k=(2^n+5^n)); forprime(p=if(64==n,274568286337,2),k,if(!(k%p),return(p))); }; \\ Antti Karttunen, Nov 02 2018

Formula

a(n) = A020639(A074600(n)). - Antti Karttunen, Nov 02 2018

A122119 Least prime factor of 2^(2^n) + 5^(2^n).

Original entry on oeis.org

7, 29, 641, 17, 97, 193, 274568286337, 257, 211457, 12289
Offset: 0

Views

Author

Zak Seidov, Oct 19 2006

Keywords

Comments

a(11) = 5189633, a(12) > 10^9, a(13) > 10^9, a(14) = 26411009, a(15) = 65537, a(16) > 10^9, a(17) > 10^9, a(18) = 93847553, a(19) > 10^9, a(20) = 230686721. - Robert Price, May 01 2013
10^15 < a(10) <= 1431459829606245207173905329679749121. - Max Alekseyev, Jun 28 2013
a(n) == 1 (mod 2^(n+1)). - Max Alekseyev, Jun 23 2013
The sequence of highest powers of 2 dividing a(n)-1 is {0, 2, 7, 4, 5, 6, 7, 8, 9, 12, ?, 12, ?, ?, 16, 16, ?, ?, 19, ?, 22}. a(2)-1 = 640 = 5*2^7, a(3)-1 = 16 = 2^4, a(4)-1 = 96 = 3*2^5, a(5)-1 = 192 = 3*2^6, a(6)-1 = 274568286336 = 3*109*6559831*2^7, a(7)-1 = 256 = 2^8,.... - Robert Price, May 02 2013
a(12) = 5488091137, a(13) = 1364951041. - Chai Wah Wu, Jul 16 2019
All the known Fermat primes > 5 are in the sequence. a(22) = 167772161, a(26) = 1352914698241, a(28) = 11726871330817, a(29) = 3221225473, a(33) = 206158430209, a(38) = 19340409532579841, a(40) = 46179488366593, a(41) = 87930143896502273, a(46) = 19703248369745921, a(48) = 26747441136906797057, a(50) = 38280596832649217, a(57) = 639871435056800071681, a(66) = 1328165573307087716353, a(71) = 188894659314785808547841, a(75) = 441106808431887820120915969, a(77) = 1272917285561380533496310661121, a(83) = 380028249247497910327235837953, a(91) = 34662321099990647697175478273, a(107) = 48028745941447155563907091045285889, a(110) = 77884452878022414427957444938301441. - Chai Wah Wu, Oct 14 2019

Crossrefs

Cf. A074600 (2^n + 5^n), A094475 (primes of form 2^n+5^n).

Programs

  • Mathematica
    Table[FactorInteger[2^(2^n)+5^(2^n)][[1,1]],{n,0,7}] (* James C. McMahon, Oct 26 2024 *)

A386618 Primes of the form 2^k + 13^k.

Original entry on oeis.org

2, 173, 815730977
Offset: 1

Views

Author

Vincenzo Librandi, Aug 17 2025

Keywords

Comments

If 13^k + 2^k is prime then k is either 0 or a power of 2. The corresponding values of k for a(1)-a(4) are 0, 2, 8 and 512. The fourth value is too long to enter.

Crossrefs

Programs

  • Magma
    [a: n in [0..200] | IsPrime(a) where a is 13^n+2^n ];
  • Mathematica
    Select[Table[2^n+13^n,{n,0,600}],PrimeQ]

A122116 Numbers k such that 2^k+5^k is semiprime.

Original entry on oeis.org

3, 6, 8, 12, 14, 16, 17, 19, 28, 38, 47, 52, 64, 101, 274, 466, 1709, 2539
Offset: 1

Views

Author

Zak Seidov, Oct 19 2006

Keywords

Crossrefs

Cf. A074600 (2^n + 5^n), A094475 (primes of form 2^k+5^k).

Programs

  • Magma
    IsSemiprime:=func< n|&+[ k[2]: k in Factorization(n)] eq 2 >;[ n: n in [2..100]|IsSemiprime(2^n+5^n)]; // Vincenzo Librandi, Dec 16 2010
  • Mathematica
    Select[Range[100],PrimeOmega[2^#+5^#]==2&] (* James C. McMahon, Oct 26 2024 *)

Extensions

a(14)-a(15) from D. S. McNeil, Dec 20 2010
a(16)-a(18) from Sean A. Irvine, Nov 13 2024
Showing 1-7 of 7 results.