cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A074600 a(n) = 2^n + 5^n.

Original entry on oeis.org

2, 7, 29, 133, 641, 3157, 15689, 78253, 390881, 1953637, 9766649, 48830173, 244144721, 1220711317, 6103532009, 30517610893, 152587956161, 762939584197, 3814697527769, 19073486852413, 95367432689201, 476837160300277
Offset: 0

Views

Author

Robert G. Wilson v, Aug 25 2002

Keywords

Comments

Digital root of a(n) is A010697(n). - Peter M. Chema, Oct 24 2016

References

  • Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015. See page 14.

Crossrefs

Programs

Formula

a(n) = 5*a(n-1)-3*2^(n-1) = 7*a(n-1)- 10*a(n-2). [Corrected by Zak Seidov, Oct 24 2009]
G.f.: 1/(1-2*x)+1/(1-5*x). E.g.f.: e^(2*x)+e^(5*x). - Mohammad K. Azarian, Jan 02 2009

A122118 Least prime factor of 2^n + 5^n.

Original entry on oeis.org

2, 7, 29, 7, 641, 7, 29, 7, 17, 7, 29, 7, 641, 7, 29, 7, 97, 7, 29, 7, 641, 7, 29, 7, 17, 7, 29, 7, 641, 7, 29, 7, 193, 7, 29, 7, 73, 7, 29, 7, 17, 7, 29, 7, 641, 7, 29, 7, 97, 7, 29, 7, 641, 7, 29, 7, 17, 7, 29, 7, 641, 7, 29, 7, 274568286337, 7, 29, 7, 137, 7, 29, 7, 17, 7, 29, 7, 457
Offset: 0

Views

Author

Zak Seidov, Oct 19 2006

Keywords

Comments

a(n_odd)=7, a(n=2+4k,k=0,1,...)=29, a(64)=274568286337 is unusually large.

Crossrefs

Cf. A020639, A074600 (2^n + 5^n), A094475 (primes of form 2^n + 5^n), A122119, A337429.
Cf. also A094473.

Programs

  • Mathematica
    Table[FactorInteger[2^n+5^n][[1,1]],{n,0,80}] (* or *) Riffle[Table[ FactorInteger[2^n+5^n][[1,1]],{n,0,80,2}],7] (* The second program is faster *) (* Harvey P. Dale, Mar 02 2015 *)
  • PARI
    A122118(n) = { my(k=(2^n+5^n)); forprime(p=if(64==n,274568286337,2),k,if(!(k%p),return(p))); }; \\ Antti Karttunen, Nov 02 2018

Formula

a(n) = A020639(A074600(n)). - Antti Karttunen, Nov 02 2018
Showing 1-2 of 2 results.