A094555 Number of walks of length n between two vertices on the same triangular face of a truncated tetrahedron (triangular prism).
0, 1, 1, 6, 11, 46, 111, 386, 1051, 3366, 9671, 29866, 87891, 267086, 794431, 2396946, 7163531, 21545206, 64526391, 193797626, 580955971, 1743741726, 5229477551, 15691927906, 47068793211, 141220360646, 423633119911, 1270955283786
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- R. J. Mathar, Counting Walks on Finite Graphs, Nov 2020, Section 3.
- Index entries for linear recurrences with constant coefficients, signature (2,5,-6).
Programs
-
Mathematica
LinearRecurrence[{2, 5, -6}, {0, 1, 1, 6}, 30] (* Greg Dresden, Jun 19 2021 *)
-
PARI
a(n) = if(n==0, 0, (3^n - (-2)^n + 1)/6) \\ Andrew Howroyd, Jun 15 2021
Formula
G.f.: x*(1 - x - x^2)/((1 - x)*(1 + 2*x)*(1 - 3*x)).
a(n) = 3^n/6 - (-2)^n/6 + 1/6 - 0^n/6.
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n >= 4.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*A001045(n-2k). - Paul Barry, Jan 04 2005
E.g.f.: exp(-2*x)*(exp(5*x) + exp(3*x) - exp(2*x) - 1)/6. - Stefano Spezia, Dec 26 2021
Comments