cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094555 Number of walks of length n between two vertices on the same triangular face of a truncated tetrahedron (triangular prism).

Original entry on oeis.org

0, 1, 1, 6, 11, 46, 111, 386, 1051, 3366, 9671, 29866, 87891, 267086, 794431, 2396946, 7163531, 21545206, 64526391, 193797626, 580955971, 1743741726, 5229477551, 15691927906, 47068793211, 141220360646, 423633119911, 1270955283786
Offset: 0

Views

Author

Paul Barry, May 11 2004

Keywords

Comments

Average of binomial and inverse binomial transforms of the Jacobsthal numbers A001045. - Paul Barry, Jan 04 2005

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 5, -6}, {0, 1, 1, 6}, 30] (* Greg Dresden, Jun 19 2021 *)
  • PARI
    a(n) = if(n==0, 0, (3^n - (-2)^n + 1)/6) \\ Andrew Howroyd, Jun 15 2021

Formula

G.f.: x*(1 - x - x^2)/((1 - x)*(1 + 2*x)*(1 - 3*x)).
a(n) = 3^n/6 - (-2)^n/6 + 1/6 - 0^n/6.
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n >= 4.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*A001045(n-2k). - Paul Barry, Jan 04 2005
E.g.f.: exp(-2*x)*(exp(5*x) + exp(3*x) - exp(2*x) - 1)/6. - Stefano Spezia, Dec 26 2021