cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A140431 2*A094555(n).

Original entry on oeis.org

0, 2, 2, 12, 22, 92, 222, 772, 2102, 6732, 19342, 59732, 175782, 534172, 1588862, 4793892, 14327062, 43090412, 129052782, 387595252, 1161911942, 3487483452, 10458955102, 31383855812, 94137586422, 282440721292, 847266239822
Offset: 0

Views

Author

Paul Curtz, Jun 19 2008

Keywords

Formula

b(n) = A091002(n-1); b(n+1)-3b(n)= A077925(n-2), where b(n)=floor(a(n)/10).
a(n) = (1-(-2)^n+3^n)/3 for n>0. a(n) = 2*a(n-1)+5*a(n-2)-6*a(n-3) for n>3. G.f.: 2*x*(1-x-x^2)/((1-x)*(1+2*x)*(1-3*x)). [Colin Barker, Sep 21 2012]

Extensions

Edited and extended by R. J. Mathar, Aug 02 2008

A140966 a(n) = (5 + (-2)^n)/3.

Original entry on oeis.org

2, 1, 3, -1, 7, -9, 23, -41, 87, -169, 343, -681, 1367, -2729, 5463, -10921, 21847, -43689, 87383, -174761, 349527, -699049, 1398103, -2796201, 5592407, -11184809, 22369623, -44739241, 89478487, -178956969, 357913943, -715827881, 1431655767, -2863311529, 5726623063
Offset: 0

Views

Author

Paul Curtz, Jul 27 2008

Keywords

Comments

Inverse binomial transform of A048573.
This is an example of the case k=-1 of sequences with recurrences a(n) = k*a(n-1) + (k+3)*a(n-2) - (2*k+2)*a(n-3).
The case k=1 is covered, for example, by A097163, A135520, A136326, A136336, or A137208.
Sequences with k=2 are A094554 and A094555.
Sequences with k=3 are A084175, A108924, and A139818.

Crossrefs

Programs

Formula

a(n) = -a(n-1) + 2*a(n-2).
G.f.: (2+3*x)/((1-x)*(1+2*x)).
a(n+1) - a(n) = (-1)^(n+1)*A000079(n).
a(n+3) = (-1)^n*A083582(n).
a(n+1) - 2*a(n) = -a(n+2).
a(n+1) - 3*a(n) = 5*(-1)^(n+1)*A078008(n) = (-1)^(n+1)*A001045(n-1).
a(2n+3) = -A083584(n), a(2n) = A163834(n). - Philippe Deléham, Feb 24 2014
E.g.f.: (5*exp(x) + exp(-2*x))/3. - Stefano Spezia, Jul 27 2024

Extensions

Definition simplified by R. J. Mathar, Sep 11 2009

A140429 a(n) = floor(3^(n-1)).

Original entry on oeis.org

0, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443
Offset: 0

Views

Author

Paul Curtz, Jun 19 2008

Keywords

Comments

Binomial transform of Jacobsthal numbers A001045.
Implicit use in A094555 (Barry).

Crossrefs

Programs

Formula

a(n) = floor(3^(n-1)) = A000244(n-1) = A133494(n), n >= 1.
O.g.f.: x/(1-3x). - R. J. Mathar, Aug 27 2008

Extensions

Extended by R. J. Mathar, Aug 28 2008
New name by M. F. Hasler, Apr 13 2018

A094554 Number of closed walks of length n at a base vertex of a truncated tetrahedron (triangular prism).

Original entry on oeis.org

1, 0, 3, 2, 19, 30, 143, 322, 1179, 3110, 10183, 28842, 89939, 262990, 802623, 2380562, 7196299, 21479670, 64657463, 193535482, 581480259, 1742693150, 5231574703, 15687733602, 47077181819, 141203583430, 423666674343
Offset: 0

Views

Author

Paul Barry, May 11 2004

Keywords

Comments

For n > 0, 6*a(n) is the number of 3-colorings of the prism of size 2 X n (i.e., C_2 X C_n).More generally, the number of k-colorings of the prism of size 2 X n is given by (k^2 - 3*k + 3)^n + (k - 1) * ((3 - k)^n + (1 - k)^n) + k^2 - 3*k + 1 (chromatic polynomial). - Sela Fried, Oct 07 2023

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 5, -6}, {1, 0, 3, 2}, 30] (* Greg Dresden, Jun 19 2021 *)
  • PARI
    a(n) = if(n==0, 1, (1 + 3^n + 2*(-2)^n)/6) \\ Andrew Howroyd, Jun 14 2021

Formula

G.f.: (1 - 2*x - 2*x^2 + 2*x^3)/((1 - x)*(1 + 2*x)*(1 - 3*x)).
a(n) = 1/6 + 3^n/6 + (-2)^n/3 for n > 0.
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n >= 4.
E.g.f.: exp(-2*x)*(1 + exp(2*x))*(2 + exp(3*x))/6. - Stefano Spezia, Sep 26 2023

A094556 Number of walks of length n between opposite vertices on a triangular prism.

Original entry on oeis.org

0, 1, 0, 7, 8, 51, 100, 407, 1008, 3451, 9500, 30207, 87208, 268451, 791700, 2402407, 7152608, 21567051, 64482700, 193885007, 580781208, 1744091251, 5228778500, 15693326007, 47065997008, 141225953051, 423621935100, 1270977653407
Offset: 0

Views

Author

Paul Barry, May 11 2004

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,5,-6},{0,1,0,7},30] (* or *) CoefficientList[ Series[ x (1-2x+2x^2)/((1-x)(1+2x)(1-3x)),{x,0,30}],x] (* Harvey P. Dale, Jul 13 2011 *)
  • PARI
    a(n) = if(n==0, 0, (3^n - 2*(-2)^n - 1)/6) \\ Andrew Howroyd, Jun 15 2021

Formula

G.f.: x*(1 - 2*x + 2*x^2)/((1 - x)*(1 + 2*x)*(1 - 3*x)).
a(n) = 3^n/6 - (-2)^n/3 - 1/6 + 0^n/3.
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n >= 4.
E.g.f.: exp(-x)*(2+exp(3*x))*sinh(x)/3. - Stefano Spezia, Sep 26 2023

A344747 a(n) = (1/6)*(3^n + (-2)^n - 1).

Original entry on oeis.org

0, 2, 3, 16, 35, 132, 343, 1136, 3195, 10012, 29183, 89256, 264355, 799892, 2386023, 7185376, 21501515, 64613772, 193622863, 581305496, 1743042675, 5230875652, 15689131703, 47074385616, 141209175835, 423655489532, 1270910544543, 3812843481736, 11438306748995
Offset: 1

Views

Author

Ryan Brooks, Jun 14 2021

Keywords

Examples

			a(4) = (1/6)*(3^4 + (-2)^4 - 1) = (1/6)*(81+16-1) = 16.
		

Crossrefs

Potentially related to A094554, A094555, and A094556 (which have the same recurrence).

Programs

  • Mathematica
    LinearRecurrence[{2, 5, -6}, {0, 2, 3}, 30] (* Greg Dresden, Jun 19 2021 *)

Formula

G.f.: x*(2 - x)/((1 - x)*(1 + 2*x)*(1 - 3*x)). - Andrew Howroyd, Jun 15 2021
a(n) = A094554(n-1) + 2*A094556(n-1). - Greg Dresden, Jun 19 2021
Showing 1-6 of 6 results.