cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A094555 Number of walks of length n between two vertices on the same triangular face of a truncated tetrahedron (triangular prism).

Original entry on oeis.org

0, 1, 1, 6, 11, 46, 111, 386, 1051, 3366, 9671, 29866, 87891, 267086, 794431, 2396946, 7163531, 21545206, 64526391, 193797626, 580955971, 1743741726, 5229477551, 15691927906, 47068793211, 141220360646, 423633119911, 1270955283786
Offset: 0

Views

Author

Paul Barry, May 11 2004

Keywords

Comments

Average of binomial and inverse binomial transforms of the Jacobsthal numbers A001045. - Paul Barry, Jan 04 2005

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 5, -6}, {0, 1, 1, 6}, 30] (* Greg Dresden, Jun 19 2021 *)
  • PARI
    a(n) = if(n==0, 0, (3^n - (-2)^n + 1)/6) \\ Andrew Howroyd, Jun 15 2021

Formula

G.f.: x*(1 - x - x^2)/((1 - x)*(1 + 2*x)*(1 - 3*x)).
a(n) = 3^n/6 - (-2)^n/6 + 1/6 - 0^n/6.
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n >= 4.
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*A001045(n-2k). - Paul Barry, Jan 04 2005
E.g.f.: exp(-2*x)*(exp(5*x) + exp(3*x) - exp(2*x) - 1)/6. - Stefano Spezia, Dec 26 2021

A094554 Number of closed walks of length n at a base vertex of a truncated tetrahedron (triangular prism).

Original entry on oeis.org

1, 0, 3, 2, 19, 30, 143, 322, 1179, 3110, 10183, 28842, 89939, 262990, 802623, 2380562, 7196299, 21479670, 64657463, 193535482, 581480259, 1742693150, 5231574703, 15687733602, 47077181819, 141203583430, 423666674343
Offset: 0

Views

Author

Paul Barry, May 11 2004

Keywords

Comments

For n > 0, 6*a(n) is the number of 3-colorings of the prism of size 2 X n (i.e., C_2 X C_n).More generally, the number of k-colorings of the prism of size 2 X n is given by (k^2 - 3*k + 3)^n + (k - 1) * ((3 - k)^n + (1 - k)^n) + k^2 - 3*k + 1 (chromatic polynomial). - Sela Fried, Oct 07 2023

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 5, -6}, {1, 0, 3, 2}, 30] (* Greg Dresden, Jun 19 2021 *)
  • PARI
    a(n) = if(n==0, 1, (1 + 3^n + 2*(-2)^n)/6) \\ Andrew Howroyd, Jun 14 2021

Formula

G.f.: (1 - 2*x - 2*x^2 + 2*x^3)/((1 - x)*(1 + 2*x)*(1 - 3*x)).
a(n) = 1/6 + 3^n/6 + (-2)^n/3 for n > 0.
a(n) = 2*a(n-1) + 5*a(n-2) - 6*a(n-3) for n >= 4.
E.g.f.: exp(-2*x)*(1 + exp(2*x))*(2 + exp(3*x))/6. - Stefano Spezia, Sep 26 2023

A344747 a(n) = (1/6)*(3^n + (-2)^n - 1).

Original entry on oeis.org

0, 2, 3, 16, 35, 132, 343, 1136, 3195, 10012, 29183, 89256, 264355, 799892, 2386023, 7185376, 21501515, 64613772, 193622863, 581305496, 1743042675, 5230875652, 15689131703, 47074385616, 141209175835, 423655489532, 1270910544543, 3812843481736, 11438306748995
Offset: 1

Views

Author

Ryan Brooks, Jun 14 2021

Keywords

Examples

			a(4) = (1/6)*(3^4 + (-2)^4 - 1) = (1/6)*(81+16-1) = 16.
		

Crossrefs

Potentially related to A094554, A094555, and A094556 (which have the same recurrence).

Programs

  • Mathematica
    LinearRecurrence[{2, 5, -6}, {0, 2, 3}, 30] (* Greg Dresden, Jun 19 2021 *)

Formula

G.f.: x*(2 - x)/((1 - x)*(1 + 2*x)*(1 - 3*x)). - Andrew Howroyd, Jun 15 2021
a(n) = A094554(n-1) + 2*A094556(n-1). - Greg Dresden, Jun 19 2021
Showing 1-3 of 3 results.