cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094567 Associated with alternating row sums of array in A094566.

Original entry on oeis.org

1, 4, 30, 203, 1394, 9552, 65473, 448756, 3075822, 21081995, 144498146, 990405024, 6788337025, 46527954148, 318907342014, 2185823439947, 14981856737618, 102687173723376, 703828359326017, 4824111341558740, 33064951031585166, 226630545879537419
Offset: 0

Views

Author

Clark Kimberling, May 12 2004

Keywords

Examples

			Obtain 4,30,203 from a(0)=1 and Fibonacci numbers 1,5,34,233: 4=5-1, 30=34-4, 203=233-30.
		

Crossrefs

Programs

  • Mathematica
    RecurrenceTable[{a[0]==1,a[n]==Fibonacci[4n+1]-a[n-1]},a[n],{n,30}] (* or *) LinearRecurrence[{6,6,-1},{1,4,30},31] (* Harvey P. Dale, Jul 13 2011 *)
  • PARI
    Vec(-(2*x-1)/((x+1)*(x^2-7*x+1)) + O(x^100)) \\ Colin Barker, Nov 19 2014
    
  • PARI
    vector(30, n, n--; (fibonacci(4*n+3) + (-1)^n)/3) \\ Michel Marcus, Nov 19 2014

Formula

a(n) = F(4n+1) - a(n-1) for n >= 1, with a(0) = 1.
a(n) = (Fib(4n+3) + (-1)^n)/3. - Ralf Stephan, Dec 04 2004
a(n) = 6*a(n-1)+6*a(n-2)-a(n-3), with a(0)=1, a(1)=4, a(2)=30. - Harvey P. Dale, Jul 13 2011
G.f.: (1-2*x)/(1-6*x-6*x^2+x^3). - Harvey P. Dale, Jul 13 2011
a(n) = (-1)^n*sum((-1)^k*Fibonacci(4*k+1), k=0..n). - Gary Detlefs, Jan 22 2013
a(n) = (2^(-n)*(5*(-2)^n+(7-3*sqrt(5))^n*(5-2*sqrt(5))+(5+2*sqrt(5))*(7+3*sqrt(5))^n))/15. - Colin Barker, Mar 05 2016

Extensions

More terms from Harvey P. Dale, Jul 13 2011