cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A033889 a(n) = Fibonacci(4*n + 1).

Original entry on oeis.org

1, 5, 34, 233, 1597, 10946, 75025, 514229, 3524578, 24157817, 165580141, 1134903170, 7778742049, 53316291173, 365435296162, 2504730781961, 17167680177565, 117669030460994, 806515533049393, 5527939700884757, 37889062373143906, 259695496911122585, 1779979416004714189
Offset: 0

Views

Author

Keywords

Comments

For positive n, a(n) equals (-1)^n times the permanent of the (4n) X (4n) tridiagonal matrix with sqrt(i)'s along the three central diagonals, where i is the imaginary unit. - John M. Campbell, Jul 12 2011
a(n) = 5^n*a(n; 3/5) = (16/5)^n*a(2*n; 3/4), and F(4*n) = 5^n*b(n; 3/5) = (16/5)^n*b(2*n; 3/4), where a(n; d) and b(n; d), n=0, 1, ..., d in C, denote the delta-Fibonacci numbers defined in comments to A014445. Two of these identities from the following relations follows: F(k+1)^n*a(n; F(k)/F(k+1)) = F(k*n+1) and F(k+1)^n*b(n; F(k)/F(k+1)) = F(k*n) (see also Witula's et al. papers). - Roman Witula, Jul 24 2012

Crossrefs

Programs

Formula

a(n) = 7*a(n-1) - a(n-2) for n >= 2. - Floor van Lamoen, Dec 10 2001
From R. J. Mathar, Jan 17 2008: (Start)
O.g.f.: (1 - 2*x)/(1 - 7*x + x^2).
a(n) = A004187(n+1) - 2*A004187(n). (End); corrected by Klaus Purath, Jul 29 2020
a(n) = A167816(4*n+1). - Reinhard Zumkeller, Nov 13 2009
a(n) = sqrt(1 + 2 * Fibonacci(2*n) * Fibonacci(2*n + 1) + 5 * (Fibonacci(2*n) * Fibonacci(2*n + 1))^2). - Artur Jasinski, Feb 06 2010
a(n) = Sum_{k=0..n} A122070(n,k)*2^k. - Philippe Deléham, Mar 13 2012
a(n) = Fibonacci(2*n)^2 + Fibonacci(2*n)*Fibonacci(2*n+2) + 1. - Gary Detlefs, Apr 18 2012
a(n) = Fibonacci(2*n)^2 + Fibonacci(2*n+1)^2. - Bruno Berselli, Apr 19 2012
a(n) = Sum_{k = 0..n} A238731(n,k)*4^k. - Philippe Deléham, Mar 05 2014
a(n) = A000045(A016813(n)). - Michel Marcus, Mar 05 2014
2*a(n) = Fibonacci(4*n) + Lucas(4*n). - Bruno Berselli, Oct 13 2017
a(n) = A094567(n-1) + A094567(n), assuming A094567(-1) = 0. - Klaus Purath, Jul 29 2020
Sum_{n>=0} (-1)^n * arctan(3/a(n)) = Pi/4 (A003881) (Wan, 2022). - Amiram Eldar, Mar 01 2024
E.g.f.: exp(7*x/2)*(5*cosh(3*sqrt(5)*x/2) + sqrt(5)*sinh(3*sqrt(5)*x/2))/5. - Stefano Spezia, Jun 03 2024

A094566 Triangle of binary products of Fibonacci numbers.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 10, 13, 21, 24, 25, 26, 34, 55, 63, 64, 65, 68, 89, 144, 165, 168, 169, 170, 178, 233, 377, 432, 440, 441, 442, 445, 466, 610, 987, 1131, 1152, 1155, 1156, 1157, 1165, 1220, 1597, 2584, 2961, 3016, 3024, 3025, 3026, 3029, 3050, 3194, 4181
Offset: 1

Views

Author

Clark Kimberling, May 12 2004

Keywords

Comments

For n>1, row n consists of n numbers, first F(2n-2) and last F(2n-1).
Central numbers: (1,4,9,25,64,...), essentially A081016.
Row sums: A027991. Alternating row sums: 1,1,4,4,30,30,203,203; the sequence b=(1,4,30,203,1394,...) is A094567.
In each row, the difference between neighboring terms is a Fibonacci number.

Examples

			Rows 1 to 4:
1
1 2
3 4 5
8 9 10 13
		

Crossrefs

Programs

  • PARI
    pef(k, n) = fibonacci(2*k)*fibonacci(2*n-2*k);
    pof(k, n) = fibonacci(2*n-2*k+1)*fibonacci(2*k-1);
    tabl(nn) = {for (n=1, nn, if (n==1, print1(1, ", "), if (n % 2 == 0, for (k=1, n/2, print1(pef(k,n), ", ");); forstep (k=n/2, 1, -1, print1(pof(k,n), ", "););, for (k=1, n\2, print1(pef(k,n), ", ");); forstep (k=n\2+1, 1, -1, print1(pof(k,n), ", ");););); print(););} \\ Michel Marcus, May 04 2016

Formula

Row 1 is the single number 1. For m>=1, Row 2m: F(2)F(4m-2), F(4)F(4m-4), ..., F(2m)F(2m), F(2m+1)F(2m-1), F(2m+3)F(2m-3), ..., F(4m-1)F(1) Row 2m+1: F(2)F(4m), F(4)F(4m-2), ..., F(2m+1)F(2m+1), F(2m+3)F(2m-1), F(2m+5)F(2m-3), ..., F(4m+1)F(1)

A094569 Associated with alternating row sums of array in A094568.

Original entry on oeis.org

2, 11, 78, 532, 3649, 25008, 171410, 1174859, 8052606, 55193380, 378301057, 2592914016, 17772097058, 121811765387, 834910260654, 5722560059188, 39223010153665, 268838511016464, 1842646566961586, 12629687457714635, 86565165637040862, 593326472001571396
Offset: 0

Views

Author

Clark Kimberling, May 12 2004

Keywords

Examples

			Obtain 11,78,532 from a(0)=2 and Fibonacci numbers 13,89,610: 11=13-2, 78=89-11, 532=610-78.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{6,6,-1},{2,11,78},30] (* Harvey P. Dale, Feb 15 2025 *)
  • PARI
    Vec(-(x-2)/((x+1)*(x^2-7*x+1)) + O(x^100)) \\ Colin Barker, Nov 19 2014
    
  • PARI
    vector(30, n, n--;(fibonacci(4*n+5) + (-1)^n)/3) \\ Michel Marcus, Nov 19 2014

Formula

a(n) = F(4n+3) - a(n-1) for n >= 1, where a(0) = 2.
a(n) = (Fib(4n+5) + (-1)^n )/3. - Ralf Stephan, Dec 04 2004
a(n) = (-1)^n * sum((-1)^k*Fibonacci(4*k+3), k=0..n). - Gary Detlefs, Jan 22 2013
a(n) = 6*a(n-1) + 6*a(n-2) - a(n-3). - Colin Barker, Nov 19 2014
G.f.: -(x-2) / ((x+1)*(x^2-7*x+1)). - Colin Barker, Nov 19 2014

Extensions

More terms from Colin Barker, Nov 19 2014
Showing 1-3 of 3 results.