cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A094586 Central numbers of the triangle T of all positive differences of distinct Fibonacci numbers.

Original entry on oeis.org

1, 5, 16, 47, 131, 356, 953, 2529, 6676, 17567, 46135, 121016, 317201, 831053, 2176712, 5700303, 14926171, 39081404, 102323209, 267896585, 701380076, 1836265535, 4807451951, 12586147632, 32951083681, 86267253461, 225850919488
Offset: 1

Views

Author

Clark Kimberling, May 13 2004

Keywords

Comments

As T is also the triangle of sums of consecutive distinct Fibonacci numbers, a(n) is such a sum, namely Sum_{j=n+1..2n} Fibonacci(j).

Examples

			a(4) = F(10)-F(6) = 55-8 = 47.
		

Crossrefs

Programs

  • GAP
    List([1..30],n->Fibonacci(2*n+2)-Fibonacci(n+2)); # Muniru A Asiru, Apr 28 2019
    
  • Magma
    F:=Fibonacci; [F(2*n+2)-F(n+2): n in [1..30]]; // G. C. Greubel, Jul 14 2019
    
  • Mathematica
    Table[Sum[Fibonacci[n+i], {i,n}], {n,30}] (* Zerinvary Lajos, Jul 12 2009 *)
    With[{F=Fibonacci}, Table[F[2n+2]-F[n+2], {n,30}]] (* G. C. Greubel, Jul 14 2019 *)
    LinearRecurrence[{4,-3,-2,1},{1,5,16,47},30] (* Harvey P. Dale, Dec 31 2024 *)
  • PARI
    vector(30, n, f=fibonacci; f(2*n+2)-f(n+2)) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    f=fibonacci; [f(2*n+2)-f(n+2) for n in (1..30)] # G. C. Greubel, Jul 14 2019

Formula

a(n) = Fibonacci(2n+2) - Fibonacci(n+2) = A094585(2n-1, n).
G.f.: x*(1+x-x^2)/((1-x-x^2)*(1-3*x+x^2)). - Colin Barker, Sep 16 2012