A094586 Central numbers of the triangle T of all positive differences of distinct Fibonacci numbers.
1, 5, 16, 47, 131, 356, 953, 2529, 6676, 17567, 46135, 121016, 317201, 831053, 2176712, 5700303, 14926171, 39081404, 102323209, 267896585, 701380076, 1836265535, 4807451951, 12586147632, 32951083681, 86267253461, 225850919488
Offset: 1
Examples
a(4) = F(10)-F(6) = 55-8 = 47.
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..2000
- Index entries for linear recurrences with constant coefficients, signature (4,-3,-2,1).
Programs
-
GAP
List([1..30],n->Fibonacci(2*n+2)-Fibonacci(n+2)); # Muniru A Asiru, Apr 28 2019
-
Magma
F:=Fibonacci; [F(2*n+2)-F(n+2): n in [1..30]]; // G. C. Greubel, Jul 14 2019
-
Mathematica
Table[Sum[Fibonacci[n+i], {i,n}], {n,30}] (* Zerinvary Lajos, Jul 12 2009 *) With[{F=Fibonacci}, Table[F[2n+2]-F[n+2], {n,30}]] (* G. C. Greubel, Jul 14 2019 *) LinearRecurrence[{4,-3,-2,1},{1,5,16,47},30] (* Harvey P. Dale, Dec 31 2024 *)
-
PARI
vector(30, n, f=fibonacci; f(2*n+2)-f(n+2)) \\ G. C. Greubel, Jul 14 2019
-
Sage
f=fibonacci; [f(2*n+2)-f(n+2) for n in (1..30)] # G. C. Greubel, Jul 14 2019
Formula
a(n) = Fibonacci(2n+2) - Fibonacci(n+2) = A094585(2n-1, n).
G.f.: x*(1+x-x^2)/((1-x-x^2)*(1-3*x+x^2)). - Colin Barker, Sep 16 2012
Comments