A101220
a(n) = Sum_{k=0..n} Fibonacci(n-k)*n^k.
Original entry on oeis.org
0, 1, 3, 14, 91, 820, 9650, 140601, 2440317, 49109632, 1123595495, 28792920872, 816742025772, 25402428294801, 859492240650847, 31427791175659690, 1234928473553777403, 51893300561135516404, 2322083099525697299278
Offset: 0
a(1,3,3) = 6 because a(1,3,0) = 0, a(1,3,1) = 1, a(1,3,2) = 2 and 4*2 - 2*1 - 3*0 = 6.
a(1, 2, k+1) - a(1, 2, k) =
A099036(k).
a(3, 2, k+1) - a(3, 2, k) =
A104004(k).
a(4, 2, k+1) - a(4, 2, k) =
A027973(k).
a(1, 3, k+1) - a(1, 3, k) =
A099159(k).
a(2^i-2, 0, k+1) =
A118654(i, k), for i > 0.
Sequences of the form a(n, 0, k):
A000045(k+1) (n=1),
A000032(k) (n=2),
A000285(k-1) (n=3),
A022095(k-1) (n=4),
A022096(k-1) (n=5),
A022097(k-1) (n=6),
A022098(k-1) (n=7),
A022099(k-1) (n=8),
A022100(k-1) (n=9),
A022101(k-1) (n=10),
A022102(k-1) (n=11),
A022103(k-1) (n=12),
A022104(k-1) (n=13),
A022105(k-1) (n=14),
A022106(k-1) (n=15),
A022107(k-1) (n=16),
A022108(k-1) (n=17),
A022109(k-1) (n=18),
A022110(k-1) (n=19),
A088209(k-2) (n=k-2),
A007502(k) (n=k-1),
A094588(k) (n=k).
Sequences of the form a(4, n, k):
A053311(k-1) (n=1),
A027974(k-1) (n=2).
-
A101220:= func< n | (&+[n^k*Fibonacci(n-k): k in [0..n]]) >;
[A101220(n): n in [0..30]]; // G. C. Greubel, Jun 01 2025
-
Join[{0}, Table[Sum[Fibonacci[n-k]*n^k, {k, 0, n}], {n, 1, 20}]] (* Vaclav Kotesovec, Jan 03 2021 *)
-
a(n)=sum(k=0,n,fibonacci(n-k)*n^k) \\ Joerg Arndt, Jan 03 2021
-
def A101220(n): return sum(n^k*fibonacci(n-k) for k in range(n+1))
print([A101220(n) for n in range(31)]) # G. C. Greubel, Jun 01 2025
A109754
Matrix defined by: a(i,0) = 0, a(i,j) = i*Fibonacci(j-1) + Fibonacci(j), for j > 0; read by ascending antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 3, 3, 3, 0, 1, 4, 4, 5, 5, 0, 1, 5, 5, 7, 8, 8, 0, 1, 6, 6, 9, 11, 13, 13, 0, 1, 7, 7, 11, 14, 18, 21, 21, 0, 1, 8, 8, 13, 17, 23, 29, 34, 34, 0, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 0, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89
Offset: 0
Table starts:
[0] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
[1] 0, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...
[2] 0, 1, 3, 4, 7, 11, 18, 29, 47, 76, ...
[3] 0, 1, 4, 5, 9, 14, 23, 37, 60, 97, ...
[4] 0, 1, 5, 6, 11, 17, 28, 45, 73, 118, ...
[5] 0, 1, 6, 7, 13, 20, 33, 53, 86, 139, ...
[6] 0, 1, 7, 8, 15, 23, 38, 61, 99, 160, ...
[7] 0, 1, 8, 9, 17, 26, 43, 69, 112, 181, ...
[8] 0, 1, 9, 10, 19, 29, 48, 77, 125, 202, ...
[9] 0, 1, 10, 11, 21, 32, 53, 85, 138, 223, ...
Rows:
A000045(j);
A000045(j+1), for j > 0;
A000032(j), for j > 0;
A000285(j-1), for j > 0;
A022095(j-1), for j > 0;
A022096(j-1), for j > 0;
A022097(j-1), for j > 0. Diagonals: a(i, i) =
A094588(i); a(i, i+1) =
A007502(i+1); a(i, i+2) =
A088209(i); Sum[a(i-j, j), {j=0...i}] =
A104161(i). a(i, j) =
A101220(i, 0, j).
Rows 7 - 19:
A022098(j-1), for j > 0;
A022099(j-1), for j > 0;
A022100(j-1), for j > 0;
A022101(j-1), for j > 0;
A022102(j-1), for j > 0;
A022103(j-1), for j > 0;
A022104(j-1), for j > 0;
A022106(j-1), for j > 0;
A022107(j-1), for j > 0;
A022108(j-1), for j > 0;
A022109(j-1), for j > 0;
A022110(j-1), for j > 0.
a(2^i-2, j+1) =
A118654(i, j), for i > 0.
-
A := (n, k) -> ifelse(k = 0, 0,
n*combinat:-fibonacci(k-1) + combinat:-fibonacci(k)):
seq(seq(A(n - k, k), k = 0..n), n = 0..6); # Peter Luschny, May 28 2022
-
T[n_, 0]:= 0; T[n_, 1]:= 1; T[n_, 2]:= n - 1; T[n_, 3]:= n - 1; T[n_, n_]:= Fibonacci[n]; T[n_, k_]:= T[n, k] = T[n - 1, k - 1] + T[n - 2, k - 2]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] (* G. C. Greubel, Jan 07 2017 *)
A354044
a(n) = 2*(-i)^n*(n*sin(c*(n+1)) - i*sin(-c*n))/sqrt(5) where c = arccos(i/2).
Original entry on oeis.org
0, 2, 5, 11, 23, 45, 86, 160, 293, 529, 945, 1673, 2940, 5134, 8917, 15415, 26539, 45525, 77842, 132716, 225685, 382877, 648165, 1095121, 1846968, 3109850, 5228261, 8777315, 14716223, 24643389, 41220110, 68873848, 114964805, 191719849, 319436697, 531789785
Offset: 0
-
function fibrec(n::Int)
n == 0 && return (BigInt(0), BigInt(1))
a, b = fibrec(div(n, 2))
c = a * (b * 2 - a)
d = a * a + b * b
iseven(n) ? (c, d) : (d, c + d)
end
function A354044(n)
n == 0 && return BigInt(0)
a, b = fibrec(n + 1)
a*(n - 1) + b
end
println([A354044(n) for n in 0:35])
-
c := arccos(I/2): a := n -> 2*(-I)^n*(n*sin(c*(n+1)) - I*sin(-c*n))/sqrt(5):
seq(simplify(a(n)), n = 0..35);
-
a(n) = fibonacci(n) + n*fibonacci(n+1) \\ Jianing Song, May 16 2022
A264147
a(n) = n*F(n+1) - (n+1)*F(n), where F = A000045.
Original entry on oeis.org
0, -1, 1, 1, 5, 10, 22, 43, 83, 155, 285, 516, 924, 1639, 2885, 5045, 8773, 15182, 26162, 44915, 76855, 131119, 223101, 378696, 641400, 1084175, 1829257, 3081193, 5181893, 8702290, 14594830, 24446971, 40902299, 68359619, 114132765, 190373580, 317258388, 528265207
Offset: 0
Cf.
A178521: n*F(n+1) + (n+1)*F(n).
Cf.
A099920: Sum_{i=0..n} F(i)*L(n-i).
Cf.
A023607: Sum_{i=0..n} F(i)*L(n+1-i).
-
# The function 'fibrec' is defined in A354044.
function A264147(n)
n == 0 && return BigInt(0)
a, b = fibrec(n)
n*b - a*(n + 1)
end # Peter Luschny, May 16 2022
-
[n*Fibonacci(n+1)-(n+1)*Fibonacci(n): n in [0..40]];
-
A264147 := proc(n)
n*combinat[fibonacci](n+1)-(n+1)*combinat[fibonacci](n) ;
end proc:
seq(A264147(n),n=0..10) ; # R. J. Mathar, Jun 02 2022
-
Table[n Fibonacci[n + 1] - (n + 1) Fibonacci[n], {n, 0, 40}]
-
makelist(n*fib(n+1)-(n+1)*fib(n), n, 0, 40);
-
for(n=0, 40, print1(n*fibonacci(n+1)-(n+1)*fibonacci(n)", "));
-
concat(0, Vec(-x*(1 - 3*x) / (1 - x - x^2)^2 + O(x^50))) \\ Colin Barker, Jul 27 2017
-
[n*fibonacci(n+1)-(n+1)*fibonacci(n) for n in (0..40)]
A353595
Array read by ascending antidiagonals. Generalized Fibonacci numbers F(n, k) = (psi^(k - 1)*(phi + n) - phi^(k - 1)*(psi + n)) / (psi - phi) where phi = (1+sqrt(5))/2 and psi = (1-sqrt(5))/2. F(n, k) for n >= 0 and k >= 0.
Original entry on oeis.org
0, 1, 1, 2, 1, 1, 3, 1, 2, 2, 4, 1, 3, 3, 3, 5, 1, 4, 4, 5, 5, 6, 1, 5, 5, 7, 8, 8, 7, 1, 6, 6, 9, 11, 13, 13, 8, 1, 7, 7, 11, 14, 18, 21, 21, 9, 1, 8, 8, 13, 17, 23, 29, 34, 34, 10, 1, 9, 9, 15, 20, 28, 37, 47, 55, 55, 11, 1, 10, 10, 17, 23, 33, 45, 60, 76, 89, 89
Offset: 0
Array starts:
n\k 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
--------------------------------------------------------
[0] 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... A000045
[1] 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ... A000045 (shifted once)
[2] 2, 1, 3, 4, 7, 11, 18, 29, 47, 76, ... A000032
[3] 3, 1, 4, 5, 9, 14, 23, 37, 60, 97, ... A104449
[4] 4, 1, 5, 6, 11, 17, 28, 45, 73, 118, ... [4] + A022095
[5] 5, 1, 6, 7, 13, 20, 33, 53, 86, 139, ... [5] + A022096
[6] 6, 1, 7, 8, 15, 23, 38, 61, 99, 160, ... [6] + A022097
[7] 7, 1, 8, 9, 17, 26, 43, 69, 112, 181, ... [7] + A022098
[8] 8, 1, 9, 10, 19, 29, 48, 77, 125, 202, ... [8] + A022099
[9] 9, 1, 10, 11, 21, 32, 53, 85, 138, 223, ... [9] + A022100
-
function fibrec(n::Int)
n == 0 && return (BigInt(0), BigInt(1))
a, b = fibrec(div(n, 2))
c = a * (b * 2 - a)
d = a * a + b * b
iseven(n) ? (c, d) : (d, c + d)
end
function Fibonacci(n::Int, k::Int)
k == 0 && return BigInt(n)
k == 1 && return BigInt(1)
k < 0 && return (-1)^(k-1)*Fibonacci(-n - 1, 2 - k)
a, b = fibrec(k - 1)
a*n + b
end
for n in -6:6
println([n], [Fibonacci(n, k) for k in -6:6])
end
-
f := n -> combinat:-fibonacci(n): F := (n, k) -> n*f(k - 1) + f(k):
seq(seq(F(n - k, k), k = 0..n), n = 0..11);
# The next implementation is for illustration only but is not recommended
# as it relies on floating point arithmetic. Illustrates the case n,k < 0.
phi := (1 + sqrt(5))/2: psi := (1 - sqrt(5))/2:
F := (n, k) -> (psi^(k-1)*(psi + n) - phi^(k-1)*(phi + n)) / (psi - phi):
for n from -6 to 6 do lprint(seq(simplify(F(n, k)), k = -6..6)) od;
-
(* Works also for n < 0 and k < 0. Uses a remark from Bill Gosper. *)
c := I*ArcSinh[1/2] - Pi/2;
F[n_, k_] := (n Sin[(k - 1) c] - I Sin[k c]) / (I^k Sqrt[5/4]);
Table[Simplify[F[n, k]], {n, 0, 6}, {k, 0, 6}] // TableForm
Showing 1-5 of 5 results.
Comments