A095908 Duplicate of A094698.
0, 1, 6, 7, 9, 11, 17, 19, 43, 73, 75, 80, 88, 96, 107, 131, 166, 193, 201, 258, 263, 268
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The trajectory of 1 is 3, 5, 11, 36, 6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... so a(3) = 6.
A007320 := proc(n) local a,ntrack; a := 0 ; ntrack := n ; while ntrack > 1 do ntrack := A094683(ntrack) ; a := a+1 ; end do: return a; end proc: # R. J. Mathar, Apr 19 2013
js[n_] := If[ EvenQ[n], Floor[ Sqrt[n]], Floor[ Sqrt[n^3]]]; f[n_] := Length[ NestWhileList[js, n, # != 1 &]] - 1; Table[ f[n], {n, 99}] (* Robert G. Wilson v, Jun 10 2004 *)
js[n_] := If[ EvenQ[ n], Floor[ Sqrt[n]], Floor[ Sqrt[n^3]]]; f[n_] := Length[ NestWhileList[js, n, # != 1 &]] - 1; a = Table[0, {50}]; Do[ b = f[n]; If[b < 51 && a[[b]] == 0, a[[b]] = n; Print[n, " = ", b]], {n, 10^5}] (* Robert G. Wilson v *)
78901 takes 258 iterations to reach 1; see A094698 for the others.
$MaxPrecision = 250000000; js[n_] := If[ EvenQ[ n], Floor[ Sqrt[n]], Floor[ Sqrt[n^3]]]; f[n_] := Block[{c = 1, k = n}, While[k = js[k]; k != 1, c++ ]; c]; a = {0}; Do[ b = f[n]; If[b > a[[ -1]], AppendTo[a, b]], {n, 3053595}]; a (* Robert G. Wilson v *)
Comments