A094709 Smallest k such that prime(n)# - k and prime(n)# + k are primes, where prime(n)# = A002110(n).
0, 1, 1, 13, 1, 17, 59, 23, 79, 101, 83, 239, 71, 149, 367, 73, 911, 313, 373, 523, 313, 331, 197, 101, 1493, 523, 293, 577, 2699, 1481, 1453, 5647, 647, 419, 757, 4253, 509, 239, 10499, 191, 4013, 2659, 617, 6733, 1297, 971
Offset: 1
Keywords
Examples
a(4)=13 because prime(4)=7, 7# = 2*3*5*7 = 210, and 210 - 13 and 210 + 13 are primes.
Links
- David Wasserman, Table of n, a(n) for n = 1..250
Programs
-
Mathematica
pc[n_]:=Module[{x=0,i=0},Do[If[PrimeQ[n-i]&&PrimeQ[n+i],x=i;Break[]],{i,9!}];x]; r=2;lst={};Do[p=Prime[n];r*=p;AppendTo[lst,pc[r]],{n,2,2*4!}];lst (* Vladimir Joseph Stephan Orlovsky, Jun 14 2009 *) sk[n_]:=Module[{k=0},While[!PrimeQ[n+k]||!PrimeQ[n-k],k++];k]; sk/@ FoldList[ Times,Prime[Range[50]]] (* Harvey P. Dale, Apr 03 2022 *)
-
Python
from sympy import isprime, prime, primerange def aupton(terms): phash, alst = 2, [0] for p in primerange(3, prime(terms)+1): phash *= p for k in range(1, phash//2): if isprime(phash-k) and isprime(phash+k): alst.append(k); break return alst print(aupton(46)) # Michael S. Branicky, May 29 2021
Extensions
More terms from Don Reble, May 27 2004
Comments