A094759 Least k <= n such that n*sigma(k) = k*sigma(n), where sigma(n) is the sum of divisors of n (A000203).
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 6, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- P. Erdős, Remarks on number theory II: Some problems on the sigma function, Acta Arith., 5 (1959), 171-177.
Crossrefs
Programs
-
Maple
N:= 100: # to get a(1) to a(N) for n from 1 to N do v:= numtheory:-sigma(n)/n; if not assigned(R[v]) then R[v]:= n fi; A[n]:= R[v]; od: seq(A[n],n=1..N); # Robert Israel, Jul 21 2015
-
Mathematica
Table[Module[{k=1,sn=DivisorSigma[1,n]},While[n DivisorSigma[1,k]!=k*sn,k++];k],{n,80}] (* Harvey P. Dale, Aug 03 2025 *)
-
PARI
for(n=1,74,s=sigma(n);k=1;while(n*sigma(k)!=k*s,k++);print1(k,","));
Extensions
Edited and extended by Don Reble and Klaus Brockhaus, May 31 2004
Comments