A094820 Partial sums of A038548.
1, 2, 3, 5, 6, 8, 9, 11, 13, 15, 16, 19, 20, 22, 24, 27, 28, 31, 32, 35, 37, 39, 40, 44, 46, 48, 50, 53, 54, 58, 59, 62, 64, 66, 68, 73, 74, 76, 78, 82, 83, 87, 88, 91, 94, 96, 97, 102, 104, 107, 109, 112, 113, 117, 119, 123, 125, 127, 128, 134, 135, 137, 140, 144, 146, 150
Offset: 1
Links
- Peter Kagey, Table of n, a(n) for n = 1..10000
- Vaclav Kotesovec, Graph - the asymptotic ratio (100000 terms)
Programs
-
Maple
ListTools:-PartialSums([seq(ceil(numtheory:-tau(n)/2), n=1..100)]); # Robert Israel, Feb 24 2016
-
Mathematica
f[n_, k_] := Floor[n/k] - Floor[(n - 1)/k] g[n_, k_] := If[k^2 <= n, f[n, k], 0] Table[Sum[f[n, k], {k, 1, n}], {n, 1, 100}] (* A000005 *) t = Table[Sum[g[n, k], {k, 1, n}], {n, 1, 100}] (* A038548 *) a[n_] := Sum[t[[i]], {i, 1, n}] Table[a[n], {n, 1, 100}] (* A094820 *) (* Clark Kimberling, Jun 18 2011 *) Table[Sum[Boole[d <= Sqrt[n]], {d, Divisors[n]}], {n, 1, 66}] // Accumulate (* Jean-François Alcover, Dec 13 2012 *)
-
PARI
a(n) = sum(k=1, n, ceil(numdiv(k)/2)); \\ Michel Marcus, Feb 24 2016
-
Python
from math import isqrt def A094820(n): return ((s:=isqrt(n))*(1-s)>>1)+sum(n//k for k in range(1,s+1)) # Chai Wah Wu, Oct 23 2023
-
Ruby
def a(n) (1..Math.sqrt(n)).inject(0) { |accum, i| accum + 1 + (n/i).to_i - i } end # Peter Kagey, Feb 24 2016
Formula
G.f.: (1/(1 - x))*Sum_{k>=1} x^(k^2)/(1 - x^k). - Ilya Gutkovskiy, Apr 13 2017
a(n) ~ (log(n) + 2*gamma - 1)*n/2 + sqrt(n)/2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Aug 19 2019
Comments