cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A176708 Partial sums of A094820.

Original entry on oeis.org

1, 3, 6, 11, 17, 25, 34, 45, 58, 73, 89, 108, 128, 150, 174, 201, 229, 260, 292, 327, 364, 403, 443, 487, 533, 581, 631, 684, 738, 796, 855, 917, 981, 1047, 1115, 1188, 1262, 1338, 1416, 1498, 1581, 1668, 1756, 1847, 1941, 2037, 2134, 2236, 2340, 2447, 2556
Offset: 1

Views

Author

Jonathan Vos Post, Apr 24 2010

Keywords

Crossrefs

Programs

  • PARI
    f(n) = sum(k=1, n, ceil(numdiv(k)/2)); \\ A094820
    a(n) = sum(k=1, n, f(k)); \\ Michel Marcus, Sep 29 2021

Extensions

a(2) corrected by Georg Fischer, Sep 29 2021

A038548 Number of divisors of n that are at most sqrt(n).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 3, 1, 3, 1, 3, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 3, 2, 2, 2, 5, 1, 2, 2, 4, 1, 4, 1, 3, 3, 2, 1, 5, 2, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 6, 1, 2, 3, 4, 2, 4, 1, 3, 2, 4, 1, 6, 1, 2, 3, 3, 2, 4, 1, 5, 3, 2, 1, 6, 2, 2, 2, 4, 1, 6, 2, 3, 2, 2, 2, 6, 1, 3, 3, 5, 1, 4, 1, 4, 4
Offset: 1

Views

Author

Keywords

Comments

Number of ways to arrange n identical objects in a rectangle, modulo rotation.
Number of unordered solutions of x*y = n. - Colin Mallows, Jan 26 2002
Number of ways to write n-1 as n-1 = x*y + x + y, 0 <= x <= y <= n. - Benoit Cloitre, Jun 23 2002
Also number of values for x where x+2n and x-2n are both squares (e.g., if n=9, then 18+18 and 18-18 are both squares, as are 82+18 and 82-18 so a(9)=2); this is because a(n) is the number of solutions to n=k(k+r) in which case if x=r^2+2n then x+2n=(r+2k)^2 and x-2n=r^2 (cf. A061408). - Henry Bottomley, May 03 2001
Also number of sums of sequences of consecutive odd numbers or consecutive even numbers including sequences of length 1 (e.g., 12 = 5+7 or 2+4+6 or 12 so a(12)=3). - Naohiro Nomoto, Feb 26 2002
Number of partitions whose consecutive parts differ by exactly two.
a(n) depends only on prime signature of n (cf. A025487). So a(24) = a(375) since 24=2^3*3 and 375=3*5^3 both have prime signature (3,1). - Christian G. Bower, Jun 06 2005
Also number of partitions of n such that if k is the largest part, then each of the parts 1,2,...,k-1 occurs exactly twice. Example: a(12)=3 because we have [3,3,2,2,1,1],[2,2,2,2,2,1,1] and [1,1,1,1,1,1,1,1,1,1,1,1]. - Emeric Deutsch, Mar 07 2006
a(n) is also the number of nonnegative integer solutions of the Diophantine equation 4*x^2 - y^2 = 16*n. For example, a(24)=4 because there are 4 solutions: (x,y) = (10,4), (11,10), (14,20), (25,46). - N-E. Fahssi, Feb 27 2008
a(n) is the number of even divisors of 2*n that are <= sqrt(2*n). - Joerg Arndt, Mar 04 2010
First differences of A094820. - John W. Layman, Feb 21 2012
a(n) = #{k: A027750(n,k) <= A000196(n)}; a(A008578(n)) = 1; a(A002808(n)) > 1. - Reinhard Zumkeller, Dec 26 2012
Row lengths of the tables in A161906 and A161908. - Reinhard Zumkeller, Mar 08 2013
Number of positive integers in the sequence defined by x_0 = n, x_(k+1) = (k+1)*(x_k-2)/(k+2) or equivalently by x_k = n/(k+1) - k. - Luc Rousseau, Mar 03 2018
Expanding the first comment: Number of rectangles with area n and integer side lengths, modulo rotation. Also number of 2D grids of n congruent squares, in a rectangle, modulo rotation (cf. A000005 for rectangles instead of squares; cf. A034836 for the 3D case). - Manfred Boergens, Jun 08 2021
Number of divisors of n that have an even number of prime divisors (counted with multiplicity), or in other words, number of terms of A028260 that divide n. - Antti Karttunen, Apr 17 2022

Examples

			a(4) = 2 since 4 = 2 * 2 = 4 * 1. Also A034178(4*4) = 2 since 16 = 4^2 - 0^2 = 5^2 - 3^2. - _Michael Somos_, May 11 2011
x + x^2 + x^3 + 2*x^4 + x^5 + 2*x^6 + x^7 + 2*x^8 + 2*x^9 + 2*x^10 + x^11 + ...
		

References

  • George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, 2004, page 18, exer. 21, 22.

Crossrefs

Different from A068108. Records give A038549, A004778, A086921.
Cf. A066839, A033676, row sums of A303300.
Inverse Möbius transform of A065043.
Cf. A244664 (Dgf at s=2), A244665 (Dgf at s=3).

Programs

Formula

a(n) = ceiling(d(n)/2), where d(n) = number of divisors of n (A000005).
a(2k) = A034178(2k) + A001227(k). a(2k+1) = A034178(2k+1). - Naohiro Nomoto, Feb 26 2002
G.f.: Sum_{k>=1} x^(k^2)/(1-x^k). - Jon Perry, Sep 10 2004
Dirichlet g.f.: (zeta(s)^2 + zeta(2*s))/2. - Christian G. Bower, Jun 06 2005 [corrected by Vaclav Kotesovec, Aug 19 2019]
a(n) = (A000005(n) + A010052(n))/2. - Omar E. Pol, Jun 23 2009
a(n) = A034178(4*n). - Michael Somos, May 11 2011
2*a(n) = A161841(n). - R. J. Mathar, Mar 07 2021
a(n) = A000005(n) - A056924(n) = A056924(n) + A010052(n) = Sum_{d|n} A065043(d). - Antti Karttunen, Apr 17 2022
Sum_{k=1..n} a(k) ~ n*log(n)/2 + (gamma - 1/2)*n, where gamma is Euler's constant (A001620). - Amiram Eldar, Nov 27 2022

A211266 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 1, 3, 5, 7, 10, 12, 15, 18, 21, 24, 28, 30, 34, 38, 41, 44, 49, 51, 56, 60, 63, 67, 72, 75, 79, 83, 88, 91, 97, 99, 104, 109, 112, 117, 123, 125, 130, 135, 140, 143, 149, 152, 157, 163, 167, 170, 177, 180, 186, 190, 194, 199, 205, 209, 215, 219, 223
Offset: 1

Views

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

Guide to related sequences:
A056924 ... 1<=x
A211159 ... 1<=x
A211261 ... 1<=x
A211262 ... 1<=x
A211263 ... 1<=x
A211264 ... 1<=x
A211265 ... 1<=x
A211266 ... 1<=x
A211267 ... 1<=x
A181972 ... 1<=x
A038548 ... 1<=x<=y<=n ... x*y=n
A072670 ... 1<=x<=y<=n ... x*y=n+1
A211270 ... 1<=x<=y<=n ... x*y=2n
A211271 ... 1<=x<=y<=n ... x*y=3n
A211272 ... 1<=x<=y<=n ... x*y=floor(n/2)
A094820 ... 1<=x<=y<=n ... x*y<=n
A091627 ... 1<=x<=y<=n ... x*y<=n+1
A211273 ... 1<=x<=y<=n ... x*y<=2n
A211274 ... 1<=x<=y<=n ... x*y<=3n
A211275 ... 1<=x<=y<=n ... x*y<=floor(n/2)

Examples

			a(6) counts these pairs: (1,2), (1,3), (1,4), (1,5), (1,6), (2,3), (2,4), (2,5), (2,6), (3,4).
		

Crossrefs

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)

A091627 Number of ordered integer pairs (b,c) with 1 <= b,c <= n such that both roots of x^2+bx+c=0 are integers.

Original entry on oeis.org

0, 0, 1, 2, 4, 5, 7, 8, 10, 12, 14, 15, 18, 19, 21, 23, 26, 27, 30, 31, 34, 36, 38, 39, 43, 45, 47, 49, 52, 53, 57, 58, 61, 63, 65, 67, 72, 73, 75, 77, 81, 82, 86, 87, 90, 93, 95, 96, 101, 103, 106, 108, 111, 112, 116, 118, 122, 124, 126, 127, 133, 134, 136, 139, 143
Offset: 0

Author

Eric W. Weisstein, Jan 24 2004

Keywords

Comments

Also number of ordered pairs of positive integers (i, j) such that i+j <= n and i*j <= n. - Seiichi Manyama, Sep 04 2021

Crossrefs

Programs

  • Mathematica
    Accumulate[ Join[{0, 0}, Table[ Ceiling[ DivisorSigma[0, n]/2], {n, 2, 64}]]]  (* Jean-François Alcover, Oct 23 2012, after Vladeta Jovovic *)
  • PARI
    a(n) = sum(i=1, n, sum(j=i, n-i, i*j<=n)); \\ Seiichi Manyama, Sep 04 2021
    
  • PARI
    N=66; x='x+O('x^N); concat([0, 0], Vec((-x+sum(k=1, sqrtint(N), x^k^2/(1-x^k)))/(1-x))) \\ Seiichi Manyama, Sep 04 2021
    
  • Python
    from math import isqrt
    def A091627(n):
        m = isqrt(n)
        return 0 if n == 0 else sum(n//k for k in range(1, m+1))-m*(m-1)//2-1 # Chai Wah Wu, Oct 07 2021

Formula

a(n) = A091626(n) - n - 1. a(n) = a(n-1) + ceiling(tau(n)/2), n>1. Partial sums of A038548. - Vladeta Jovovic, Jun 12 2004
G.f.: (1/(1 - x)) * (-x + Sum_{k>=1} x^(k^2)/(1 - x^k)). - Seiichi Manyama, Sep 04 2021

A211264 Number of integer pairs (x,y) such that 0 < x < y <= n and x*y <= n.

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 16, 17, 19, 21, 23, 24, 27, 28, 31, 33, 35, 36, 40, 41, 43, 45, 48, 49, 53, 54, 57, 59, 61, 63, 67, 68, 70, 72, 76, 77, 81, 82, 85, 88, 90, 91, 96, 97, 100, 102, 105, 106, 110, 112, 116, 118, 120, 121, 127, 128, 130, 133, 136
Offset: 1

Author

Clark Kimberling, Apr 06 2012

Keywords

Comments

Partial sums of A056924.
For a guide to related sequences, see A211266.

Crossrefs

Programs

  • Magma
    [0] cat [&+[(&+[p[2]: p in Factorization(i)] mod 2) *Floor(n div i):i in [2..n] ]:n in [2..65]]; // Marius A. Burtea, Oct 17 2019
    
  • Maple
    with(numtheory): seq(add((bigomega(i) mod 2)*floor(n/i), i=1..n), n=1..60); # Ridouane Oudra, Oct 17 2019
    # Alternative:
    ListTools:-PartialSums(map(t-> floor(numtheory:-tau(t)/2), [$1..100])); # Robert Israel, Oct 18 2019
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] := t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x + 1, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A056924 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A211159 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211261 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211262 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211263 *)
    Print
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Table[c1[n, n], {n, 1, z1}]          (* A211264 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A211265 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211266 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211267 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A181972 *)
  • Python
    from math import isqrt
    def A211264(n): return (lambda m: sum(n//k for k in range(1, m+1))-m*(m+1)//2)(isqrt(n)) # Chai Wah Wu, Oct 08 2021

Formula

a(n) = (1/2)*Sum_{i=1..n} (1 - A008836(i))*floor(n/i). - Enrique Pérez Herrero, Jul 10 2012 [Corrected by Ridouane Oudra, Oct 17 2019]
From Ridouane Oudra, Oct 17 2019: (Start)
a(n) = Sum_{i=1..n} A066829(i)*floor(n/i)
a(n) = (1/2)*(A006218(n) - A000196(n)). (End)
From Ridouane Oudra, Sep 28 2024: (Start)
a(n) = Sum_{k=1..n} floor((sqrt(k^2 + 4*n) - k)/2) ;
a(n) = A094820(n) - A000196(n) ;
a(n) = A181972(2*n). (End)

A211270 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y = 2n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 3, 2, 1, 4, 1, 3, 3, 2, 1, 4, 2, 2, 3, 3, 1, 5, 1, 3, 3, 2, 3, 5, 1, 2, 3, 4, 1, 5, 1, 3, 5, 2, 1, 5, 2, 4, 3, 3, 1, 5, 3, 4, 3, 2, 1, 7, 1, 2, 5, 3, 3, 5, 1, 3, 3, 5, 1, 7, 1, 2, 5, 3, 3, 5, 1, 5, 4, 2, 1, 7, 3, 2, 3, 4, 1, 8, 3, 3, 3, 2, 3, 6, 1, 4, 5
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(12) counts these pairs: (2,12), (3,8), (4,6).
For n = 2, only the pair (2,2) satisfies the condition, thus a(2) = 1. - _Antti Karttunen_, Sep 30 2018
		

Crossrefs

Programs

  • Maple
    seq(floor((numtheory:-tau(2*n)-1)/2),n=1..100); # Robert Israel, Feb 25 2019
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* this sequence *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
  • PARI
    A211270(n) = sumdiv(2*n,y,(((2*n/y)<=y)&&(y<=n))); \\ Antti Karttunen, Sep 30 2018

Formula

a(n) = floor((A000005(2n)-1)/2). - Robert Israel, Feb 25 2019

Extensions

Term a(2) corrected by Antti Karttunen, Sep 30 2018

A211271 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 2, 3, 1, 2, 1, 4, 2, 2, 1, 4, 2, 2, 2, 4, 1, 4, 1, 4, 2, 2, 3, 4, 1, 2, 2, 6, 1, 4, 1, 4, 3, 2, 1, 6, 2, 4, 2, 4, 1, 3, 3, 6, 2, 2, 1, 7, 1, 2, 3, 5, 3, 4, 1, 4, 2, 6, 1, 6, 1, 2, 4, 4, 3, 4, 1, 8, 2, 2, 1, 7, 3, 2, 2, 6, 1, 6, 3, 4, 2, 2, 3, 7, 1, 4, 3, 7, 1, 4, 1, 6, 5, 2, 1, 6
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(3) counts this pair: (3,3). - _Antti Karttunen_, Jan 15 2025
a(20) counts these pairs: (3,20), (4,15), (5,12), (6,10).
		

Crossrefs

Cf. A211266.
Cf. also A211262.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
     {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)
  • PARI
    A211271(n) = { my(n3=3*n); sumdiv(n3,d,(d <= (n3/d) && (n3/d) <= n)); }; \\ Antti Karttunen, Jan 15 2025

Extensions

Data section extended up to a(108) and a(3) corrected from 0 to 1 by Antti Karttunen, Jan 15 2025

A211272 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 1, 3, 3, 1, 1, 2, 2, 2, 2, 3, 3, 1, 1, 3, 3, 1, 1, 3, 3, 2, 2, 2, 2, 1, 1, 4, 4, 2, 2, 2, 2, 2, 2, 3, 3, 1, 1, 4, 4, 1, 1, 3, 3, 2, 2, 2, 2, 2, 2, 5, 5, 1, 1, 2, 2, 2, 2, 4, 4, 1, 1, 4, 4, 1, 1, 3, 3, 3, 3, 2, 2, 1, 1, 5, 5, 2, 2
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(24) counts these pairs: (1,12), (2,6), (3,4).
		

Crossrefs

Programs

  • Magma
    [0] cat [Ceiling(#Divisors( Floor(n/2))/2):n in [2..100]]; // Marius A. Burtea, Feb 07 2020
  • Maple
    [seq(ceil(numtheory:-tau(floor(n/2))/2),n=1..100)]; - Robert Israel, Feb 07 2020
  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Formula

a(n) = ceiling(A000005(floor(n/2))/2). - Robert Israel, Feb 07 2020

A211273 Number of integer pairs (x,y) such that 0

Original entry on oeis.org

1, 3, 5, 7, 10, 13, 15, 19, 22, 25, 28, 32, 35, 39, 43, 46, 49, 55, 57, 62, 66, 69, 73, 78, 82, 86, 90, 95, 98, 104, 106, 112, 117, 120, 125, 131, 133, 138, 143, 148, 152, 158, 161, 166, 172, 176, 179, 186, 189, 196, 200, 204, 209, 215, 219, 225, 229, 233
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(5) counts these pairs: (1,1), (1,2), (1,3), (1,4), (1,5), (2,2), (2,3), (2,4), (2,5), (3,3)
		

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Extensions

a(1)-a(2) corrected by Sean A. Irvine, Jan 22 2025

A211274 Number of integer pairs (x,y) such that 0 < x <= y <= n and x*y <= 3n.

Original entry on oeis.org

1, 3, 6, 9, 12, 16, 20, 24, 28, 33, 37, 43, 46, 52, 57, 62, 67, 72, 78, 84, 88, 95, 99, 107, 111, 117, 124, 130, 134, 142, 147, 154, 159, 166, 173, 179, 184, 191, 197, 206, 210, 218, 223, 231, 237, 243, 250, 259, 264, 271, 277, 286, 289, 299, 305, 313
Offset: 1

Author

Clark Kimberling, Apr 07 2012

Keywords

Comments

For a guide to related sequences, see A211266.

Examples

			a(4) counts these pairs: (1,1), (1,2), (1,3), (1,4), (2,3), (2,4), (3,3,), (3,4), (4,4).
		

Crossrefs

Cf. A211266.

Programs

  • Mathematica
    a = 1; b = n; z1 = 120;
    t[n_] :=  t[n] = Flatten[Table[x*y, {x, a, b - 1},
    {y, x, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, n], {n, 1, z1}]           (* A038548 *)
    Table[c[n, n + 1], {n, 1, z1}]       (* A072670 *)
    Table[c[n, 2*n], {n, 1, z1}]         (* A211270 *)
    Table[c[n, 3*n], {n, 1, z1}]         (* A211271 *)
    Table[c[n, Floor[n/2]], {n, 1, z1}]  (* A211272 *)
    c1[n_, m_] := c1[n, m] = Sum[c[n, k], {k, a, m}]
    Print
    Table[c1[n, n], {n, 1, z1}]          (* A094820 *)
    Table[c1[n, n + 1], {n, 1, z1}]      (* A091627 *)
    Table[c1[n, 2*n], {n, 1, z1}]        (* A211273 *)
    Table[c1[n, 3*n], {n, 1, z1}]        (* A211274 *)
    Table[c1[n, Floor[n/2]], {n, 1, z1}] (* A211275 *)

Extensions

a(1)-a(3) corrected by Sean A. Irvine, Jan 22 2025
Showing 1-10 of 16 results. Next