Original entry on oeis.org
1, 2, 4, 9, 18, 40, 100, 225, 525, 1225, 3136, 7056, 17640, 44100, 108900, 261360, 637065, 1656369, 4008004, 10020010, 25050025, 64128064, 155739584, 393853824, 1012766976, 2538950544, 6347376360, 15774544800, 41408180100
Offset: 1
A094838
The longest subsequence length that provides an example for A094837.
Original entry on oeis.org
1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 12, 12, 13, 13, 14
Offset: 1
Original entry on oeis.org
1, 3, 7, 17, 41, 87, 187, 412, 937, 2162, 5298, 12354, 29994, 74094, 182994, 444354, 1081419, 2737788, 6745792, 16765802, 41815827, 105943891, 261683475, 655537299, 1668304275
Offset: 1
a(12) = 1 + 2 + 4 + 10 + 24 + 46 + 100 + 225 + 525 + 1225 + 3136 + 7056 = 12354.
A094858
Maximal number of longest common subsequences between any two binary strings of length n (Version 2).
Original entry on oeis.org
1, 2, 2, 4, 4, 6, 8, 11, 15, 20, 26, 36, 51
Offset: 1
Guenter Stertenbrink (Sterten(AT)aol.com), Jun 14 2004
A094824
Maximum number of longest common substrings of two binary sequences of length n.
Original entry on oeis.org
1, 2, 2, 2, 3, 3, 4, 6, 6, 7, 7, 8, 8, 10, 11, 12, 14
Offset: 1
a(7) = 4 since the two strings 0001011 and 0011010 have as maximum length common substrings the 4 strings 011,001,101,010 and computer search shows that no other pair of strings of length 7 has more than 4 common maximum length substrings.
See
A094837 for a related sequence.
a(1)-a(12) verified and extended to a(13), a(14) by
John W. Layman, Jun 17 2004
A094291
a(n) = maximal value of C(i, j) * C(n-j, n-i) for 0 <= j <= i <= n.
Original entry on oeis.org
1, 2, 4, 9, 18, 40, 100, 225, 525, 1225, 3136, 7056, 17640, 44100, 108900, 261360, 637065, 1656369, 4008004, 10020010, 25050025, 64128064, 155739584, 393853824, 1012766976, 2538950544, 6347376360, 15868440900, 41408180100, 102252852900
Offset: 1
a(3) is maximal with x=1, y=2, giving a(3) = C(2,1) * C(3-1,3-2). This is equivalent to the number of instances of length-2 common subsequences between "aab" and "abb".
A171001
Binomial(n-k,k)^2 where k = ceiling(n/4).
Original entry on oeis.org
1, 0, 1, 4, 9, 9, 36, 100, 225, 400, 1225, 3136, 7056, 15876, 44100, 108900, 245025, 627264, 1656369, 4008004, 9018009, 25050025, 64128064, 153165376, 344622096, 1012766976, 2538950544, 6009350400, 13521038400, 41408180100, 102252852900, 240407818596
Offset: 0
A171006
Binomial(n-k-1,k) * binomial(n-k,k+1) where k = ceiling(n/4).
Original entry on oeis.org
0, 0, 0, 1, 6, 1, 12, 60, 200, 150, 700, 2450, 7056, 8820, 31752, 97020, 261360, 426888, 1359072, 3864861, 10020010, 19324305, 57257200, 155739584, 393853824, 851005584, 2405321568, 6347376360, 15774544800, 37026362100, 101219995800, 261312846300
Offset: 0
Showing 1-8 of 8 results.
Comments