A095071 Zero-bit dominant primes, i.e., primes whose binary expansion contains more 0's than 1's.
17, 67, 73, 97, 131, 137, 193, 257, 263, 269, 277, 281, 293, 337, 353, 389, 401, 449, 521, 523, 547, 577, 593, 641, 643, 673, 769, 773, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1091, 1093, 1097, 1109, 1123, 1129, 1153, 1163, 1171
Offset: 1
Examples
73 is in the sequence because 73 is a prime and 73_10 = 1001001_2. '1001001' has four 0's and one 1. - _Indranil Ghosh_, Jan 31 2017
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..20000
- A. Karttunen and J. Moyer, C-program for computing the initial terms of this sequence
Programs
-
Mathematica
Reap[Do[p=Prime[k];id=IntegerDigits[p,2];n=Length@id;If[Count[id,0]>n/2,Sow[p]],{k,200}]][[2,1]] (* Zak Seidov *) Select[Prime[Range[200]],DigitCount[#,2,0]>DigitCount[#,2,1]&] (* Harvey P. Dale, Nov 28 2024 *)
-
PARI
B(x) = { nB = floor(log(x)/log(2)); b1 = 0; b0 = 0; for(i = 0, nB, if(bittest(x,i), b1++;, b0++;); ); if(b0 > b1, return(1);, return(0););}; forprime(x = 2, 1171, if(B(x), print1(x, ", "); ); ); \\ Washington Bomfim, Jan 11 2011
-
PARI
{forprime(p=2,1171,nB=floor(log(p)/log(2)); sum(i=0,nB,bittest(p,i))<=nB/2&print1(p,","))} \\ Zak Seidov, Jan 11 2011
-
Python
#Program to generate the b-file from sympy import isprime i=1 j=1 while j<=200: if isprime(i) and bin(i)[2:].count("0")>bin(i)[2:].count("1"): print(str(j)+" "+str(i)) j+=1 i+=1 # Indranil Ghosh, Jan 31 2017