A095355 Ratio A095106(n)/A095093(n) rounded down.
0, 0, 0, 3, 3, 5, 15, 13, 10, 13, 25, 22, 97, 85, 203, 359, 625, 1067, 1880, 3166, 6068
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
L = {}; Do[p = Prime[k]; If[Mod[p, 4] == 3 && Min[Table[Sum[JacobiSymbol[n, p], {n, 0, m}], {m, 0, p - 1}]] < 0, L = Append[L, p]], {k, 1, 192}]; L (* From Jonathan Sondow, Oct 25 2011 *)
isok(m) = {my(s=0); if(m%4==3&&isprime(m), for(i=1, m-1, if((s+=kronecker(i, m))<0, return(1)))); 0; } \\ Jinyuan Wang, Jul 20 2020
def A095103_list(n) : def is_Motzkin(n, k): s = 0 for i in (1..k) : s += jacobi_symbol(i, n) if s < 0 : return false return true P = filter(is_prime, range(n+1)[3::4]) return filter(lambda m: not is_Motzkin(m, m//2), P) A095103_list(1163) # Peter Luschny, Aug 08 2012
is(m) = {if(!isprime(m), return(0)); my(s=0); for(i=1, m-1, if((s+=kronecker(i, m))<0, return(0))); 1; } a(n) = {my(c=0); forstep(m=2^n+3*(n>1), 2^(n+1), 4, c+=is(m)); c; } \\ Jinyuan Wang, Jul 20 2020
Comments