cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A095355 Ratio A095106(n)/A095093(n) rounded down.

Original entry on oeis.org

0, 0, 0, 3, 3, 5, 15, 13, 10, 13, 25, 22, 97, 85, 203, 359, 625, 1067, 1880, 3166, 6068
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

This is the average diving index for those 4k+3 primes in range ]2^n,2^(n+1)] that "dive". See A095103.
The ratios before rounding are: 0, 0, 0, 3, 3, 5.666667, 15.666667, 13.166667, 10.142857, 13.926829, 25.805195, 22.118881, 97.536585, 85.237736, 203.39802, 359.470768, 625.039342, 1067.145123, 1880.907721, 3166.124599, 6068.683879.
Ratio (A095106(n)/A095093(n))/(A095109(n)/A095091(n)) starts as follows: 0, 0, 0, 1, 0.5, 0.428571, 0.4, 0.387097, 0.308824, 0.277027, 0.248387, 0.215361, 0.213383, 0.191474, 0.178036, 0.169496, 0.156814, 0.148329, 0.141456, 0.134383.

Crossrefs

A095356 gives the same ratios rounded to nearest integer. A095359 gives similar ratios computed for all 4k+3 integers.

Formula

a(n) = 0 if A095093(n) is 0, otherwise a(n) = floor(A095106(n)/A095093(n)).

A095356 Ratio A095106(n)/A095093(n) rounded to nearest integer.

Original entry on oeis.org

0, 0, 0, 3, 3, 6, 16, 13, 10, 14, 26, 22, 98, 85, 203, 359, 625, 1067, 1881, 3166, 6069
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Crossrefs

Cf. A095355, where the same ratios are given round down.

Formula

a(n) = 0 if A095093(n) is 0, otherwise a(n) = round(A095106(n)/A095093(n)).

A095008 Number of 4k+3 primes (A002145) in range ]2^n,2^(n+1)].

Original entry on oeis.org

1, 1, 1, 3, 3, 7, 13, 22, 37, 71, 128, 231, 440, 807, 1519, 2872, 5371, 10204, 19341, 36759, 70179, 134241, 256856, 492936, 947272, 1822615, 3513691, 6781495, 13103816, 25348667, 49092241, 95168205, 184661253, 358636497, 697094872, 1356052491, 2639893495, 5142817901
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A036378(n) - A095007(n) = A095010(n) + A095012(n) = A095092(n) + A095093(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A095103 4k+3 primes whose Legendre-vector is not valid Dyck-path.

Original entry on oeis.org

19, 43, 67, 107, 127, 139, 163, 179, 211, 223, 227, 283, 307, 331, 347, 367, 379, 443, 463, 467, 487, 491, 499, 523, 547, 571, 587, 619, 631, 643, 683, 691, 727, 739, 787, 811, 823, 827, 859, 883, 907, 947, 967, 1019, 1051, 1087, 1123, 1163
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Intersection of A000040 and A095101. Complement of A095102 in A002145.
Cf. A095093, A095108 (diving indices).

Programs

  • Mathematica
    L = {}; Do[p = Prime[k]; If[Mod[p, 4] == 3 && Min[Table[Sum[JacobiSymbol[n, p], {n, 0, m}], {m, 0, p - 1}]] < 0, L = Append[L, p]], {k, 1, 192}]; L (* From Jonathan Sondow, Oct 25 2011 *)
  • PARI
    isok(m) = {my(s=0); if(m%4==3&&isprime(m), for(i=1, m-1, if((s+=kronecker(i, m))<0, return(1)))); 0; } \\ Jinyuan Wang, Jul 20 2020
    
  • Sage
    def A095103_list(n) :
        def is_Motzkin(n, k):
            s = 0
            for i in (1..k) :
                s += jacobi_symbol(i, n)
                if s < 0 : return false
            return true
        P = filter(is_prime, range(n+1)[3::4])
        return filter(lambda m: not is_Motzkin(m, m//2), P)
    A095103_list(1163) # Peter Luschny, Aug 08 2012

Formula

a(n) = 4*A095273(n) + 3.

A095091 Number of 4k+3 integers in range [2^n, 2^(n+1)] whose Jacobi-vector is not a valid Motzkin-path (A095101).

Original entry on oeis.org

0, 0, 0, 1, 2, 7, 15, 31, 68, 148, 310, 664, 1345, 2768, 5673, 11605, 23665, 48035, 97599, 197383
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Cf. A095093.

Formula

a(n) = 2^(n-2) - A095090(n) for n > 1.

A095092 Number of 4k+3 primes whose Legendre-vector is a Dyck-path (A095102) in range ]2^n,2^(n+1)].

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 7, 10, 16, 30, 51, 88, 153, 277, 509, 905, 1660, 3079, 5535, 10234, 19053
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Programs

  • PARI
    is(m) = {if(!isprime(m), return(0)); my(s=0); for(i=1, m-1, if((s+=kronecker(i, m))<0, return(0))); 1; }
    a(n) = {my(c=0); forstep(m=2^n+3*(n>1), 2^(n+1), 4, c+=is(m)); c; } \\ Jinyuan Wang, Jul 20 2020

Formula

a(n) = A095008(n) - A095093(n).
Showing 1-6 of 6 results.