A095357 Ratio A095107(n)/A095008(n) rounded down.
2, 6, 10, 18, 35, 49, 108, 181, 346, 651, 1236, 2348, 4240, 8454, 16537, 30963, 60986, 118814, 225337, 438305, 854049
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
The 7 primes for which A029837(p)=6 are 37, 41, 43, 47, 53, 59, 61.
[1,1] cat [#PrimesInInterval(2^n, 2^(n+1)): n in [2..29]]; // Vincenzo Librandi, Nov 18 2014
t = Table[PrimePi[2^n], {n, 0, 20}]; Rest@t - Most@t (* Robert G. Wilson v, Mar 20 2006 *)
a(n) = primepi(1<<(n+1))-primepi(1<
is(m) = {my(s=0); if(isprime(m), for(i=1, m-1, if((s+=kronecker(i, m))<0, return(1)))); 0; } a(n) = {my(c=0); forstep(m=2^n+3, 2^(n+1), 4, c+=is(m)); c; } \\ Jinyuan Wang, Jul 20 2020
is(m) = {if(!isprime(m), return(0)); my(s=0); for(i=1, m-1, if((s+=kronecker(i, m))<0, return(0))); 1; } a(n) = {my(c=0); forstep(m=2^n+3*(n>1), 2^(n+1), 4, c+=is(m)); c; } \\ Jinyuan Wang, Jul 20 2020
prime(12) = 37 -> 1 0 0 1 0 1 ..... n = 6 prime(13) = 41 -> 1 0 1 0 0 1 ..... all primes p: prime(14) = 43 -> 1 0 1 0 1 1 ..... 2^(6-1) <= p < 2^6 prime(15) = 47 -> 1 0 1 1 1 1 prime(16) = 53 -> 1 1 0 1 0 1 prime(17) = 59 -> 1 1 1 0 1 1 prime(18) = 61 -> 1 1 1 1 0 1 col-sums of bits: 7 3 5 4 3 7 : T(6,5)=7, T(6,4)=3, T(6,3)=5, ...
S[n_] := S[n] = IntegerDigits[Select[Range[2^(n-1), 2^n], PrimeQ], 2] // Transpose; T[1, 1] = 0; T[n_, k_] := S[n][[n-k+1]] // Total; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 14 2021 *)
Comments