cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A095357 Ratio A095107(n)/A095008(n) rounded down.

Original entry on oeis.org

2, 6, 10, 18, 35, 49, 108, 181, 346, 651, 1236, 2348, 4240, 8454, 16537, 30963, 60986, 118814, 225337, 438305, 854049
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Comments

This is the average length of maximum Dyck path prefix (i.e. non-diving portion) found in the "Legendre-vectors" of all 4k+3 primes in range ]2^n,2^(n+1)]. See A095104-A095105.
The ratios before rounding are: 2, 6, 10, 18, 35.333333, 49.428571, 108.461538, 181.545455, 346.702703, 651.295775, 1236.34375, 2348.779221, 4240.445455, 8454.26518, 16537.703752, 30963.160864, 60986.990505, 118814.20247, 225337.874981, 438305.90522, 854049.74263.
Ratio (A095107(n)/A095008(n))/(A095110(n)/A000079(n-2)) starts as follows: 1, 1, 0.5, 0.75, 0.375, 0.4375, 0.40625, 0.34375, 0.289062, 0.277344, 0.25, 0.225586, 0.214844, 0.197021, 0.185425, 0.175293, 0.16391, 0.155701, 0.14756, 0.140224.

Crossrefs

A095358 gives the same ratios rounded to nearest integer. A095361 gives similar ratios computed for all 4k+3 integers.

Formula

a(n) = floor(A095107(n)/A095008(n)).

A095358 Ratio A095107(n)/A095008(n) rounded to nearest integer.

Original entry on oeis.org

2, 6, 10, 18, 35, 49, 108, 182, 347, 651, 1236, 2349, 4240, 8454, 16538, 30963, 60987, 118814, 225338, 438306, 854050
Offset: 1

Views

Author

Antti Karttunen, Jun 12 2004

Keywords

Crossrefs

Cf. A095357, where the same ratios are given round down.

Formula

a(n) = round(A095107(n)/A095008(n)).

A036378 Number of primes p between powers of 2, 2^n < p <= 2^(n+1).

Original entry on oeis.org

1, 1, 2, 2, 5, 7, 13, 23, 43, 75, 137, 255, 464, 872, 1612, 3030, 5709, 10749, 20390, 38635, 73586, 140336, 268216, 513708, 985818, 1894120, 3645744, 7027290, 13561907, 26207278, 50697537, 98182656, 190335585, 369323305, 717267168, 1394192236, 2712103833
Offset: 0

Views

Author

Keywords

Comments

Number of primes whose binary order (A029837) is n+1, i.e., those with ceiling(log_2(p)) = n+1. [corrected by Jon E. Schoenfield, May 13 2018]
First differences of A007053. This sequence illustrates how far the Bertrand postulate is oversatisfied.
Scaled for Ramanujan primes as in A190501, A190502.
This sequence appears complete such that any nonnegative number can be written as a sum of distinct terms of this sequence. The sequence has been checked for completeness up to the gap between 2^46 and 2^47. Assuming that after 2^46 the formula x/log(x) is a good approximation to primepi(x), it can be proved that 2*a(n) > a(n+1) for all n >= 46, which is a sufficient condition for completeness. [Frank M Jackson, Feb 02 2012]

Examples

			The 7 primes for which A029837(p)=6 are 37, 41, 43, 47, 53, 59, 61.
		

Crossrefs

Programs

  • Magma
    [1,1] cat [#PrimesInInterval(2^n, 2^(n+1)): n in [2..29]]; // Vincenzo Librandi, Nov 18 2014
  • Mathematica
    t = Table[PrimePi[2^n], {n, 0, 20}]; Rest@t - Most@t (* Robert G. Wilson v, Mar 20 2006 *)
  • PARI
    a(n) = primepi(1<<(n+1))-primepi(1<
    				

Formula

a(n) = primepi(2^(n+1)) - primepi(2^n).
a(n) = A095005(n)+A095006(n) = A095007(n) + A095008(n) = A095013(n) + A095014(n) = A095015(n) + A095016(n) (for n > 1) = A095021(n) + A095022(n) + A095023(n) + A095024(n) = A095019(n) + A095054(n) = A095020(n) + A095055(n) = A095060(n) + A095061(n) = A095063(n) + A095064(n) = A095094(n) + A095095(n).

Extensions

More terms from Labos Elemer, May 13 2004
Entries checked by Robert G. Wilson v, Mar 20 2006

A095093 Number of 4k+3 primes whose Legendre-vector is not Dyck-path (A095103) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 0, 0, 1, 1, 3, 6, 12, 21, 41, 77, 143, 287, 530, 1010, 1967, 3711, 7125, 13806, 26525, 51126
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Cf. A095103.

Programs

  • PARI
    is(m) = {my(s=0); if(isprime(m), for(i=1, m-1, if((s+=kronecker(i, m))<0, return(1)))); 0; }
    a(n) = {my(c=0); forstep(m=2^n+3, 2^(n+1), 4, c+=is(m)); c; } \\ Jinyuan Wang, Jul 20 2020

Formula

a(n) = A095008(n) - A095092(n).

A095092 Number of 4k+3 primes whose Legendre-vector is a Dyck-path (A095102) in range ]2^n,2^(n+1)].

Original entry on oeis.org

1, 1, 1, 2, 2, 4, 7, 10, 16, 30, 51, 88, 153, 277, 509, 905, 1660, 3079, 5535, 10234, 19053
Offset: 1

Views

Author

Antti Karttunen, Jun 01 2004

Keywords

Crossrefs

Programs

  • PARI
    is(m) = {if(!isprime(m), return(0)); my(s=0); for(i=1, m-1, if((s+=kronecker(i, m))<0, return(0))); 1; }
    a(n) = {my(c=0); forstep(m=2^n+3*(n>1), 2^(n+1), 4, c+=is(m)); c; } \\ Jinyuan Wang, Jul 20 2020

Formula

a(n) = A095008(n) - A095093(n).

A095007 Number of 4k+1 primes (A002144) in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 1, 1, 2, 4, 6, 10, 21, 38, 66, 127, 233, 432, 805, 1511, 2837, 5378, 10186, 19294, 36827, 70157, 133975, 256852, 492882, 946848, 1823129, 3513599, 6780412, 13103462, 25348870, 49090415, 95167380, 184662052, 358630671, 697097364, 1356051342, 2639870329, 5142823877
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A036378(n) - A095008(n) = A095009(n) + A095011(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A095010 Number of 8k+3 primes (A007520) in range [2^n,2^(n+1)].

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 7, 10, 20, 35, 66, 113, 218, 412, 746, 1460, 2672, 5104, 9651, 18375, 35105, 67165, 128410, 246453, 473535, 911489, 1756670, 3390856, 6552449, 12673142, 24546849, 47583904, 92330578, 179317889, 348548185, 678029708, 1319939685, 2571409639
Offset: 1

Views

Author

Antti Karttunen and Labos Elemer, Jun 01 2004

Keywords

Crossrefs

Formula

a(n) = A095014(n) - A095011(n) = A095008(n) - A095012(n).

Extensions

a(34)-a(38) from Amiram Eldar, Jun 12 2024

A096369 Triangle read by rows, 0<=k

Original entry on oeis.org

0, 1, 2, 2, 1, 2, 2, 1, 1, 2, 5, 3, 3, 2, 5, 7, 3, 4, 5, 3, 7, 13, 7, 6, 6, 4, 7, 13, 23, 13, 12, 9, 10, 12, 11, 23, 43, 22, 23, 22, 23, 22, 21, 21, 43, 75, 37, 37, 36, 40, 39, 38, 38, 37, 75, 137, 71, 71, 73, 66, 56, 71, 70, 66, 67, 137, 255, 128, 125, 130, 127, 132, 128, 130, 129, 126, 125, 255
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 19 2004

Keywords

Comments

T(n,0) = A036378(n-1) for n>1; T(n,n-1) = T(n,0) for n>2;
T(n,1) = A095008(n-1) for n>2;
T(n,n-2) = A095766(n-1) for n>1;
conjecture: T(n,k) > 0 for n>1.

Examples

			prime(12) = 37 -> 1 0 0 1 0 1 ..... n = 6
prime(13) = 41 -> 1 0 1 0 0 1 ..... all primes p:
prime(14) = 43 -> 1 0 1 0 1 1 ..... 2^(6-1) <= p < 2^6
prime(15) = 47 -> 1 0 1 1 1 1
prime(16) = 53 -> 1 1 0 1 0 1
prime(17) = 59 -> 1 1 1 0 1 1
prime(18) = 61 -> 1 1 1 1 0 1
col-sums of bits: 7 3 5 4 3 7 : T(6,5)=7, T(6,4)=3, T(6,3)=5,
...
		

Programs

  • Mathematica
    S[n_] := S[n] = IntegerDigits[Select[Range[2^(n-1), 2^n], PrimeQ], 2] // Transpose;
    T[1, 1] = 0;
    T[n_, k_] := S[n][[n-k+1]] // Total;
    Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 14 2021 *)
Showing 1-8 of 8 results.