A225152 Let b(k) be A036378, then a(n) is the number of b(k) terms such that 2^n < b(k) <= 2^(n+1).
2, 0, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 0
Examples
a(7) = 2 as between 128 and 256 there are 2 terms (A036378) namely 137 and 255.
Programs
-
Mathematica
getterm[n2_] := PrimePi[2^(n2+1)]-PrimePi[2^n2]; termcount[n3_] := (m1=0; While[getterm[m1]<=2^n3, m1++]; m1); Table[termcount[p+1]-termcount[p], {p, 0, 39}]
Comments