cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A095282 Primes whose binary-expansion ends with an even number of 1's.

Original entry on oeis.org

2, 3, 11, 19, 43, 47, 59, 67, 79, 83, 107, 131, 139, 163, 179, 191, 211, 227, 239, 251, 271, 283, 307, 331, 347, 367, 379, 419, 431, 443, 463, 467, 491, 499, 523, 547, 563, 571, 587, 619, 643, 659, 683, 691, 719, 739, 751, 787, 811, 827, 859
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Crossrefs

Intersection of A000040 & (complement of A079523). Complement of A095283 in A000040. Cf. A027699, A095292.

Programs

  • Maple
    q:= proc(n) local i, l, r; l, r:= convert(n, base, 2), 0;
          for i to nops(l) while l[i]=1 do r:=r+1 od; is(r, even)
        end:
    select(q, [ithprime(i)$i=1..200])[];  # Alois P. Heinz, Dec 15 2019
  • Mathematica
    been1Q[n_]:=Module[{c=Split[IntegerDigits[n,2]][[-1]]},c[[1]]==1&&EvenQ[ Length[ c]]]; Join[{2},Select[Prime[Range[150]],been1Q]] (* Harvey P. Dale, Dec 14 2019 *)
  • PARI
    is(n)=valuation(n+1,2)%2==0 && isprime(n) \\ Charles R Greathouse IV, Oct 09 2013

A095293 Number of A095283-primes in range ]2^n,2^(n+1)].

Original entry on oeis.org

0, 2, 1, 4, 4, 9, 14, 29, 52, 90, 167, 312, 577, 1072, 2026, 3776, 7177, 13585, 25726, 49125, 93569, 178735, 342381, 657180, 1262818, 2430501, 4684999, 9040931, 17470670, 33798206, 65455531, 126889351, 246216909
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2004

Keywords

Comments

As expected, the ratio a(n)/A095292(n) seems to approach 2: 0, 0, 1, 4, 1.33333, 2.25, 1.55556, 2.07143, 2.26087, 1.91489, 1.89773, 2.05263, 1.95593, 1.98519, 2.01793, 1.95344, 2.00924, 1.99633, 1.99287, 2.0083, 2.00075, 1.99746, 1.99841, 1.99971, 2.00034, 2.00001, 2.00018, 1.99977, 1.99971, 1.99997, 2.00004, 1.99995, 2.00003

Crossrefs

a(n) = A036378(n)-A095292(n). Cf. A095005.

Programs

Showing 1-2 of 2 results.