A095344 Length of n-th string generated by a Kolakoski(9,1) rule starting with a(1)=1.
1, 1, 9, 9, 49, 81, 281, 601, 1729, 4129, 11049, 27561, 71761, 182001, 469049, 1197049, 3073249, 7861441, 20154441, 51600201, 132217969, 338618769, 867490649, 2221965721, 5691928321, 14579791201, 37347504489, 95666669289, 245056687249, 627723364401
Offset: 1
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0,5,4).
Programs
-
GAP
a:=[1,1,9];; for n in [4..35] do a[n]:=5*a[n-2]+4*a[n-3]; od; a; # G. C. Greubel, Dec 26 2019
-
Haskell
a095344 n = a095344_list !! (n-1) a095344_list = tail xs where xs = 1 : 1 : 1 : zipWith (-) (map (* 5) $ zipWith (+) (tail xs) xs) xs -- Reinhard Zumkeller, Aug 16 2013
-
Magma
R
:=PowerSeriesRing(Integers(), 35); Coefficients(R!( x*(1+x+ 4*x^2)/((1+x)*(1-x-4*x^2)) )); // G. C. Greubel, Dec 26 2019 -
Maple
seq(simplify(2*(-1)^n -(2/I)^n*(ChebyshevU(n, I/4) -2*I*ChebyshevU(n-1, I/4)) ), n = 1..35); # G. C. Greubel, Dec 26 2019
-
Mathematica
Table[2*(-1)^n - 2^n*(Fibonacci[n+1, 1/2] - 2*Fibonacci[n, 1/2]), {n,35}] (* G. C. Greubel, Dec 26 2019 *) LinearRecurrence[{0,5,4},{1,1,9},40] (* Harvey P. Dale, Oct 12 2022 *)
-
PARI
Vec(x*(1+x+4*x^2)/((1+x)*(1-x-4*x^2)) + O(x^50)) \\ Colin Barker, Apr 20 2016
-
PARI
vector(35, n, round( 2*(-1)^n - (2/I)^n*(polchebyshev(n, 2, I/4) -2*I*polchebyshev(n-1, 2, I/4)) )) \\ G. C. Greubel, Dec 26 2019
-
Sage
def A095344_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( x*(1+x+4*x^2)/((1+x)*(1-x-4*x^2)) ).list() a=A095344_list(35); a[1:] # G. C. Greubel, Dec 26 2019
Formula
a(1) = a(2) = 1; for n>1, a(n) = a(n-1) + 4*a(n-2) - 4*(-1)^n.
G.f.: x*(1 + x + 4*x^2)/((1 + x)*(1 - x - 4*x^2)). - Colin Barker, Mar 25 2012
a(n) = 5*a(n-2) + 4*a(n-3). - Colin Barker, Mar 25 2012
a(n) = 2*(-1)^n + (2^(-1-n)*(-(-7+sqrt(17))*(1+sqrt(17))^n - (1-sqrt(17))^n*(7+sqrt(17))))/sqrt(17). - Colin Barker, Apr 20 2016
a(n) = 2*(-1)^n - 2^n*(Fibonacci(n+1, 1/2) - 2*Fibonacci(n, 1/2)) = 2*(-1)^n - (2/I)^n*(ChebyshevU(n, I/4) - 2*I*ChebyshevU(n-1, I/4)). - G. C. Greubel, Dec 26 2019
Comments