A095660
Pascal (1,3) triangle.
Original entry on oeis.org
3, 1, 3, 1, 4, 3, 1, 5, 7, 3, 1, 6, 12, 10, 3, 1, 7, 18, 22, 13, 3, 1, 8, 25, 40, 35, 16, 3, 1, 9, 33, 65, 75, 51, 19, 3, 1, 10, 42, 98, 140, 126, 70, 22, 3, 1, 11, 52, 140, 238, 266, 196, 92, 25, 3, 1, 12, 63, 192, 378, 504, 462, 288, 117, 28, 3, 1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3
Offset: 0
Triangle starts:
3;
1, 3;
1, 4, 3;
1, 5, 7, 3;
1, 6, 12, 10, 3;
1, 7, 18, 22, 13, 3;
1, 8, 25, 40, 35, 16, 3;
1, 9, 33, 65, 75, 51, 19, 3;
1, 10, 42, 98, 140, 126, 70, 22, 3;
1, 11, 52, 140, 238, 266, 196, 92, 25, 3;
1, 12, 63, 192, 378, 504, 462, 288, 117, 28, 3;
1, 13, 75, 255, 570, 882, 966, 750, 405, 145, 31, 3;
Row sums:
A000079(n+1), n>=1, 3 if n=0. Alternating row sums are [3, -2, followed by 0's].
-
a095660 n k = a095660_tabl !! n !! k
a095660_row n = a095660_tabl !! n
a095660_tabl = [3] : iterate
(\row -> zipWith (+) ([0] ++ row) (row ++ [0])) [1,3]
-- Reinhard Zumkeller, Apr 08 2012
-
A095660:= func< n,k | n eq 0 select 3 else (1+2*k/n)*Binomial(n,k) >;
[A095660(n,k): k in [0..n], n in [1..12]]; // G. C. Greubel, May 02 2021
-
T(n,k):=piecewise(n=0,3,0Mircea Merca, Apr 08 2012
-
{3}~Join~Table[(1 + 2 k/n) Binomial[n, k], {n, 11}, {k, 0, n}] // Flatten (* Michael De Vlieger, Sep 14 2015 *)
-
def A095660(n,k): return 3 if n==0 else (1+2*k/n)*binomial(n,k)
flatten([[A095660(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 02 2021
A095663
Eighth column (m=7) of (1,3)-Pascal triangle A095660.
Original entry on oeis.org
3, 22, 92, 288, 750, 1716, 3564, 6864, 12441, 21450, 35464, 56576, 87516, 131784, 193800, 279072, 394383, 547998, 749892, 1012000, 1348490, 1776060, 2314260, 2985840, 3817125, 4838418, 6084432, 7594752, 9414328, 11594000, 14191056
Offset: 0
A225624
Triangle read by rows: T(n,k) is the number of descent sequences of length n with exactly k-1 descents, n>=1, 1<=k<=n.
Original entry on oeis.org
1, 2, 0, 3, 1, 0, 4, 5, 0, 0, 5, 15, 3, 0, 0, 6, 35, 25, 1, 0, 0, 7, 70, 117, 28, 0, 0, 0, 8, 126, 405, 271, 22, 0, 0, 0, 9, 210, 1155, 1631, 483, 13, 0, 0, 0, 10, 330, 2871, 7359, 5126, 711, 5, 0, 0, 0, 11, 495, 6435, 27223, 36526, 13482, 889, 1, 0, 0, 0, 12, 715, 13299, 86919, 199924, 151276, 30906, 962, 0, 0, 0, 0
Offset: 1
Triangle begins:
01: 1,
02: 2, 0,
03: 3, 1, 0,
04: 4, 5, 0, 0,
05: 5, 15, 3, 0, 0,
06: 6, 35, 25, 1, 0, 0,
07: 7, 70, 117, 28, 0, 0, 0,
08: 8, 126, 405, 271, 22, 0, 0, 0,
09: 9, 210, 1155, 1631, 483, 13, 0, 0, 0,
10: 10, 330, 2871, 7359, 5126, 711, 5, 0, 0, 0,
11: 11, 495, 6435, 27223, 36526, 13482, 889, 1, 0, 0, 0,
12: 12, 715, 13299, 86919, 199924, 151276, 30906, 962, 0, 0, 0, 0,
13: 13, 1001, 25740, 247508, 903511, 1216203, 546001, 63462, 903, 0, 0, 0, 0,
...
The number of descents for the A225588(5)=23 descent sequences of length 5 are (dots for zeros):
.#: descent seq. no. of descents
01: [ . . . . . ] 0
02: [ . . . . 1 ] 0
03: [ . . . 1 . ] 1
04: [ . . . 1 1 ] 0
05: [ . . 1 . . ] 1
06: [ . . 1 . 1 ] 1
07: [ . . 1 . 2 ] 1
08: [ . . 1 1 . ] 1
09: [ . . 1 1 1 ] 0
10: [ . 1 . . . ] 1
11: [ . 1 . . 1 ] 1
12: [ . 1 . . 2 ] 1
13: [ . 1 . 1 . ] 2
14: [ . 1 . 1 1 ] 1
15: [ . 1 . 1 2 ] 1
16: [ . 1 . 2 . ] 2
17: [ . 1 . 2 1 ] 2
18: [ . 1 . 2 2 ] 1
19: [ . 1 1 . . ] 1
20: [ . 1 1 . 1 ] 1
21: [ . 1 1 . 2 ] 1
22: [ . 1 1 1 . ] 1
23: [ . 1 1 1 1 ] 0
There are 5 sequences with 0 descents, 15 with 1 descents, 3 with 2 descents, and 0 for 3 or 5 descents. Therefore row 5 is [5, 15, 3, 0, 0].
-
b:= proc(n, i, t) option remember; local j; if n<1 then [0$t, 1]
else []; for j from 0 to t+1 do zip((x, y)->x+y, %,
b(n-1, j, t+`if`(jAlois P. Heinz, May 18 2013
-
b[n_, i_, t_] := b[n, i, t] = Module[{j, pc}, If[n<1, Append[Array[0 &, t], 1], pc = {}; For[j = 0, j <= t+1, j++, pc = Plus @@ PadRight[ {pc, b[n-1, j, t+If[jJean-François Alcover, Feb 27 2014, after Alois P. Heinz *)
-
# After Alois P. Heinz.
@CachedFunction
def b(n, i, t, N):
B = [0 for x in range(N)]
if n < 1: B[t] = 1; return B
for j in (0..t+1):
B = map(operator.add, B, b(n-1, j, t+int(jPeter Luschny, May 20 2013; updated May 21 2013
Showing 1-3 of 3 results.
Comments