cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A238801 Triangle T(n,k), read by rows, given by T(n,k) = C(n+1, k+1)*(1-(k mod 2)).

Original entry on oeis.org

1, 2, 0, 3, 0, 1, 4, 0, 4, 0, 5, 0, 10, 0, 1, 6, 0, 20, 0, 6, 0, 7, 0, 35, 0, 21, 0, 1, 8, 0, 56, 0, 56, 0, 8, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 10, 0, 120, 0, 252, 0, 120, 0, 10, 0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1, 12, 0, 220, 0, 792, 0, 792, 0, 220, 0, 12, 0
Offset: 0

Views

Author

Philippe Deléham, Mar 05 2014

Keywords

Comments

Row sums are powers of 2.

Examples

			Triangle begins:
1;
2, 0;
3, 0, 1;
4, 0, 4, 0;
5, 0, 10, 0, 1;
6, 0, 20, 0, 6, 0;
7, 0, 35, 0, 21, 0, 1;
8, 0, 56, 0, 56, 0, 8, 0;
9, 0, 84, 0, 126, 0, 36, 0, 1;
10, 0, 120, 0, 252, 0, 120, 0, 10, 0; etc.
		

Crossrefs

Programs

  • Mathematica
    Table[Binomial[n + 1, k + 1]*(1 - Mod[k , 2]), {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Nov 22 2017 *)
  • PARI
    T(n,k) = binomial(n+1, k+1)*(1-(k % 2));
    tabl(nn) = for (n=0, nn, for (k=0, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Nov 23 2017

Formula

G.f.: 1/((1+(y-1)*x)*(1-(y+1)*x)).
T(n,k) = 2*T(n-1,k) + T(n-2,k-2) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..n} T(n,k)*x^k = A000027(n+1), A000079(n), A015518(n+1), A003683(n+1), A079773(n+1), A051958(n+1), A080920(n+1), A053455(n), A160958(n+1) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively.

A178616 Triangle by columns, odd columns of Pascal's triangle A007318, otherwise (1, 0, 0, 0, ...).

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 0, 1, 0, 4, 0, 4, 1, 0, 5, 0, 10, 0, 1, 0, 6, 0, 20, 0, 6, 1, 0, 7, 0, 35, 0, 21, 0, 1, 0, 8, 0, 56, 0, 56, 0, 8, 0, 1, 0, 9, 0, 84, 0, 126, 0, 36, 0, 1, 0, 10, 0, 120, 0, 252, 0, 120, 0, 10, 1
Offset: 0

Views

Author

Gary W. Adamson, May 30 2010

Keywords

Comments

Row sums = a variant of A052950, starting (1, 1, 3, 4, 9, 16, 33, ...); whereas A052950 starts (2, 1, 3, 4, 9, ...).
Column 1 of the inverse of A178616 is a signed variant of A065619 prefaced with a 0; where A065619 = (1, 2, 3, 8, 25, 96, 427, ...).

Examples

			First few rows of the triangle:
  1,
  0,  1;
  0,  2, 1;
  0,  3, 0,   1
  0,  4, 0,   4, 1;
  0,  5, 0,  10, 0,   1;
  0,  6, 0,  20, 0,   6, 1;
  0,  7, 0,  35, 0,  21, 0,   1;
  0,  8, 0,  56, 0,  56, 0,   8, 1;
  0,  9, 0,  84, 0, 126, 0,  36, 0,  1;
  0, 10, 0, 120, 0, 252, 0, 120, 0, 10, 1;
  0, 11, 0, 165, 0, 462, 0, 330, 0, 55, 0, 1;
  ...
		

Crossrefs

Formula

Triangle, odd columns of Pascal's triangle; (1, 0, 0, 0, ...) as even columns k.
Alternatively, (since A178616 + A162169 - Identity matrix) = Pascal's triangle,
we can begin with Pascal's triangle, subtract A162169, then add the Identity
matrix to obtain A178616.

A096754 Triangle read by rows giving coefficients of the trigonometric expansion of Cos(n*x).

Original entry on oeis.org

1, 1, 0, -1, 1, 0, -3, 1, 0, -6, 0, 1, 1, 0, -10, 0, 5, 1, 0, -15, 0, 15, 0, -1, 1, 0, -21, 0, 35, 0, -7, 1, 0, -28, 0, 70, 0, -28, 0, 1, 1, 0, -36, 0, 126, 0, -84, 0, 9, 1, 0, -45, 0, 210, 0, -210, 0, 45, 0, -1, 1, 0, -55, 0, 330, 0, -462, 0, 165, 0, -11, 1, 0, -66, 0, 495, 0, -924, 0, 495, 0, -66, 0, 1, 1, 0, -78, 0, 715
Offset: 1

Views

Author

Robert G. Wilson v, Jul 07 2004

Keywords

Comments

T(n,k)=cos(n,k)*cos(pi*k/2) begins {1}, {1,0}, {1,0,-1}, {1,0,-3,0},... - Paul Barry, May 21 2006

Examples

			The trigonometric expansion of Cos(4x) = Cos[x]^4 - 6*Cos[x]^2*Sin[x]^2 + Sin[x]^4, therefore the fourth row is 1, 0, -6, 0, 1.
The trigonometric expansion of Cos(5x) = Cos[x]^5 - 10*Cos[x]^3*Sin[x]^2 + 5*Cos[x]*Sin[x]^4, therefore the fifth row of the triangle is 1, 0, -10, 0, 5
The table begins:
1
1 0 -1
1 0 -3
1 0 -6 0 1
1 0 -10 0 5
1 0 -15 0 15 0 -1
1 0 -21 0 35 0 -7
1 0 -28 0 70 0 -28 0 1
		

Crossrefs

Another version of the triangle in A034839. Cf. A095704.
First column is A000012 = C(n, 0), third column is A000217 = C(n, 2), fifth column is A000332 = C(n, 4), seventh column is A000579 = C(n, 6), ninth column is A000581 = C(n, 8).
A001287 = C(n, 10), A010965 = C(n, 12), A010967 = C(n, 14), A010969 = C(n, 16), A010971 = C(n, 18),
A010973 = C(n, 20), A010975 = C(n, 22), A010977 = C(n, 24), A010979 = C(n, 26), A010981 = C(n, 28),
A010983 = C(n, 30), A010985 = C(n, 32), A010987 = C(n, 34), A010989 = C(n, 36), A010991 = C(n, 38),
A010993 = C(n, 40), A010995 = C(n, 42), A010997 = C(n, 44), A010999 = C(n, 46), A011001 = C(n, 48),
A017714 = C(n, 50), A017716 = C(n, 52), A017718 = C(n, 54), A017720 = C(n, 56), etc.

Programs

  • Mathematica
    Flatten[Table[ Plus @@ CoefficientList[ TrigExpand[ Cos[n*x]], { Cos[x], Sin[x]}], {n, 13}]]

A135685 Triangular sequence of the coefficients of the numerator of the rational recursive sequence for tan(n*y) with x = tan(y).

Original entry on oeis.org

0, 0, 1, 0, -2, 0, -3, 0, 1, 0, 4, 0, -4, 0, 5, 0, -10, 0, 1, 0, -6, 0, 20, 0, -6, 0, -7, 0, 35, 0, -21, 0, 1, 0, 8, 0, -56, 0, 56, 0, -8, 0, 9, 0, -84, 0, 126, 0, -36, 0, 1, 0, -10, 0, 120, 0, -252, 0, 120, 0, -10, 0, -11, 0, 165, 0, -462, 0, 330, 0, -55, 0, 1
Offset: 0

Views

Author

Roger L. Bagula, Feb 17 2008

Keywords

Comments

Signed version of A034867 with interlaced zeros. - Joerg Arndt, Sep 14 2014
The negatives of these terms gives the coefficients for the numerators for when n is negative (i.e. tan(-n*y) = -tan(n*y)). - James Burling, Sep 14 2014

Examples

			Triangle starts:
  0;
  0,   1;
  0,  -2;
  0,  -3,  0,   1;
  0,   4,  0,  -4;
  0,   5,  0, -10,  0,    1;
  0,  -6,  0,  20,  0,   -6;
  0,  -7,  0,  35,  0,  -21,  0,   1;
  0,   8,  0, -56,  0,   56,  0,  -8;
  0,   9,  0, -84,  0,  126,  0, -36,  0,   1;
  0, -10,  0, 120,  0, -252,  0, 120,  0, -10;
  0, -11,  0, 165,  0, -462,  0, 330,  0, -55,  0,  1;
		

Crossrefs

Programs

  • Maple
    g[0]:= 0:
    g[1]:= x;
    for n from 2 to 20 do
    g[n]:= expand(-2*(-1)^n*g[n-1]+(x^2+1)*g[n-2])
    od:
    0, seq(seq(coeff(g[n],x,j),j=0..degree(g[n])),n=1..20); # Robert Israel, Sep 14 2014
  • Mathematica
    p[n_, x_]:= p[n, x]= If[n<2, n*x, (p[n-1, x] + x)/(1 - x*p[n-1, x])];
    Table[CoefficientList[Numerator[FullSimplify[p[n, x]]], x], {n,0,12}]//Flatten
  • Sage
    def p(n, x): return n*x if (n<2) else 2*(-1)^(n+1)*p(n-1,x) + (1+x^2)*p(n-2,x)
    def A135685(n,k): return ( p(n,x) ).series(x,n+1).list()[k]
    flatten([[A135685(n,k) for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Nov 26 2021

Formula

p(n, x) = (p(n-1, x) + x)/(1 - x*p(n-1, x)), with p(0, x) = 0, p(1, x) = x.
Sum_{j} T(n,j)*x^j = g(n,x) where g(0,x) = 0, g(1,x) = x, g(n,x) = -2*(-1)^n*g(n-1,x) + (x^2+1)*g(n-2,x). - Robert Israel, Sep 14 2014

Extensions

Prepended first term and offset corrected by James Burling, Sep 14 2014
Showing 1-4 of 4 results.