A095816 Number of permutations of 1..n with no three elements in correct or reverse order.
1, 1, 2, 4, 18, 92, 570, 4082, 33292, 304490, 3086890, 34357812, 416526730, 5463479106, 77094352076, 1164544912938, 18749754351338, 320544941916628, 5799226664694602, 110695180631374114, 2223242026407894732, 46868311165318977130, 1034758905785710599402
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- W. M. Dymacek and I. Lambert, Permutations Avoiding Runs of i, i+1, i+2 or i, i-1, i-2, J. Int. Seq. 14 (2011) # 11.1.6, Table 1.
- D. M. Jackson and R. C. Read, A note on permutations without runs of given length, Aequationes Math. 17 (1978), no. 2-3, 336-343.
Crossrefs
Programs
-
PARI
seq(n)={my(m=3); Vec(sum(k=0, n, k!*((2*x^m-x^(m+1)-x)/(x^m-1) + O(x*x^n))^k))} \\ Andrew Howroyd, Aug 31 2018
Formula
G.f. Sum_{n>=0} n!*((2*x^m-x^(m+1)-x)/(x^m-1))^n where m = 3. - Ivana Jovovic ( ivana121(AT)EUnet.yu ), Nov 11 2007
From Vaclav Kotesovec, May 26 2023: (Start)
a(n) ~ n! * (1 - 2/n + 6/n^2 - 28/(3*n^3) - 10/(3*n^4) + 496/(15*n^5) + 1384/(45*n^6) - 79724/(315*n^7) - 259306/(315*n^8) + 3718094/(2835*n^9) + 33233992/(2025*n^10) + ...).
a(n) = (n-3)*a(n-1) + 3*(n-1)*a(n-2) + (2*n-5)*a(n-3) - (n-3)*a(n-4) - (2*n-13)*a(n-5) - (n-8)*a(n-6) + (n-6)*a(n-7).
(End)
Extensions
More terms from Ivana Jovovic (ivana121(AT)EUnet.yu), Nov 11 2007
a(0)=1 prepended by Max Alekseyev, Jun 14 2011
Comments