cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095977 Expansion of g.f. 2*x / ((1+x)^2*(1-2*x)^2).

Original entry on oeis.org

2, 4, 14, 32, 82, 188, 438, 984, 2202, 4852, 10622, 23056, 49762, 106796, 228166, 485448, 1029162, 2174820, 4582670, 9631360, 20194802, 42253724, 88235734, 183927992, 382769082, 795364308, 1650380958, 3420066544, 7078742402, 14634703372, 30223843942, 62356562216
Offset: 1

Views

Author

Ralf Stephan, Jul 16 2004

Keywords

Comments

Number of 2 X 2 tiles in all tilings of a 3 X (n+1) rectangle with 1 X 1 and 2 X 2 square tiles. - Emeric Deutsch, Feb 18 2007
The terms of this sequence have a primitive divisor for all terms beyond the 4th if and only if n is not of the form 4k+2, for some nonnegative integer k. - Anthony Flatters (Anthony.Flatters(AT)uea.ac.uk), Aug 17 2007

Crossrefs

Programs

  • Maple
    a:=n->n/9*2^(n+2)+1/27*2^(n+3)-2*n/9*(-1)^n-8/27*(-1)^n: seq(a(n),n=1..30); # Emeric Deutsch, Feb 18 2007
  • Mathematica
    Table[(1/27)*((3*n + 2)*2^(n + 2) - (6*n + 8)*(-1)^n) , {n,1,50}] (* G. C. Greubel, Dec 28 2016 *)
  • PARI
    Vec(2*x / ((1+x)^2 * (1-2*x)^2) + O(x^50)) \\ Michel Marcus, Nov 07 2015

Formula

a(n) = (1/27)*((3*n + 2)*2^(n + 2) - (6*n + 8)*(-1)^n).
a(n) = 2 * A073371(n-1).
a(n) = Sum_{k=0..floor((n+1)/2)} k*2^k*binomial(n+1-k,k). - Emeric Deutsch, Feb 18 2007
E.g.f.: 2*(cosh(x/2) + sinh(x/2))*(15*x*cosh(3*x/2) + (8 + 9*x)*sinh(3*x/2))/27. - Stefano Spezia, Oct 12 2024