A095996 a(n) = largest divisor of n! that is coprime to n.
1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, 479001600, 868725, 14350336, 638512875, 20922789888000, 14889875, 6402373705728000, 14849255421, 7567605760000, 17717861581875, 1124000727777607680000, 2505147019375
Offset: 1
Keywords
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., Eq. (5.66).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
Programs
-
Magma
[Denominator(n^n/Factorial(n)): n in [1..25]]; // Vincenzo Librandi, Sep 04 2014
-
Maple
series(LambertW(x),x,30); # N. J. A. Sloane, Jan 08 2021
-
Mathematica
f[n_] := Select[Divisors[n! ], GCD[ #, n] == 1 &][[ -1]]; Table[f[n], {n, 30}] Denominator[Exp[Table[Limit[Zeta[s]*Sum[(1 - If[Mod[k, n] == 0, n, 0])/k^(s - 1), {k, 1, n}], s -> 1], {n, 1, 30}]]] (* Conjecture Mats Granvik, Sep 09 2013 *) Table[Denominator[n^n/n!], {n, 30}] (* Vincenzo Librandi, Sep 04 2014 *)
-
Maxima
a(n):=sum((-1)^(n-j)*binomial(n,j)*(j/n+1)^n,j,0,n); makelist(num(a(n)),n,1,20); /* Vladimir Kruchinin, Jun 02 2013 */
-
PARI
a(n) = denominator(n^n/n!); \\ G. C. Greubel, Nov 14 2017
Formula
a(p) = (p-1)!.
a(n) = numerator(Sum_{j = 0..n} (-1)^(n-j)*binomial(n,j)*(j/n+1)^n ). - Vladimir Kruchinin, Jun 02 2013
a(n) = denominator(n^n/n!). - Vincenzo Librandi Sep 04 2014
Comments