cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A095996 a(n) = largest divisor of n! that is coprime to n.

Original entry on oeis.org

1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, 479001600, 868725, 14350336, 638512875, 20922789888000, 14889875, 6402373705728000, 14849255421, 7567605760000, 17717861581875, 1124000727777607680000, 2505147019375
Offset: 1

Views

Author

Robert G. Wilson v, Jul 19 2004, based on a suggestion from Leroy Quet, Jun 18 2004

Keywords

Comments

The denominators of the coefficients in Taylor series for LambertW(x) are 1, 1, 1, 2, 3, 24, 5, 720, 315, 4480, 567, 3628800, 1925, ..., which is this sequence prefixed by 1. (Cf. A227831.) - N. J. A. Sloane, Aug 02 2013
The second Mathematica program is faster than the first for large n. - T. D. Noe, Sep 07 2013

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, 2nd ed., Eq. (5.66).

Crossrefs

Programs

  • Magma
    [Denominator(n^n/Factorial(n)): n in [1..25]]; // Vincenzo Librandi, Sep 04 2014
    
  • Maple
    series(LambertW(x),x,30); # N. J. A. Sloane, Jan 08 2021
  • Mathematica
    f[n_] := Select[Divisors[n! ], GCD[ #, n] == 1 &][[ -1]]; Table[f[n], {n, 30}]
    Denominator[Exp[Table[Limit[Zeta[s]*Sum[(1 - If[Mod[k, n] == 0, n, 0])/k^(s - 1), {k, 1, n}], s -> 1], {n, 1, 30}]]] (* Conjecture Mats Granvik, Sep 09 2013 *)
    Table[Denominator[n^n/n!], {n, 30}] (* Vincenzo Librandi, Sep 04 2014 *)
  • Maxima
    a(n):=sum((-1)^(n-j)*binomial(n,j)*(j/n+1)^n,j,0,n);
    makelist(num(a(n)),n,1,20); /* Vladimir Kruchinin, Jun 02 2013 */
    
  • PARI
    a(n) = denominator(n^n/n!); \\ G. C. Greubel, Nov 14 2017

Formula

a(p) = (p-1)!.
a(n) = n!/A051696(n) = (n-1)!/A062763(n).
a(n) = numerator(Sum_{j = 0..n} (-1)^(n-j)*binomial(n,j)*(j/n+1)^n ). - Vladimir Kruchinin, Jun 02 2013
a(n) = denominator(n^n/n!). - Vincenzo Librandi Sep 04 2014