cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A096026 Numbers k such that (k+j) mod (2+j) = 1 for j from 0 to 8 and (k+9) mod 11 <> 1.

Original entry on oeis.org

2523, 5043, 7563, 10083, 12603, 15123, 17643, 20163, 22683, 25203, 30243, 32763, 35283, 37803, 40323, 42843, 45363, 47883, 50403, 52923, 57963, 60483, 63003, 65523, 68043, 70563, 73083, 75603, 78123, 80643, 85683, 88203, 90723, 93243
Offset: 1

Views

Author

Klaus Brockhaus, Jun 15 2004

Keywords

Comments

Numbers k such that k mod 2520 = 3 and k mod 27720 <> 3.

Examples

			2523 mod 2 = 2524 mod 3 = 2525 mod 4 = 2526 mod 5 = 2527 mod 6 = 2528 mod 7 = 2529 mod 8 = 2530 mod 9 = 2531 mod 10 = 1 and 2532 mod 11 = 2, hence 2523 is in the sequence.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | forall{j: j in [0..8] | IsOne((n+j) mod (2+j)) and (n+9) mod 11 ne 1}]; // Bruno Berselli, Apr 11 2013
  • Mathematica
    Select[Range[94000],Union[Mod[#+Range[0,8],Range[2,10]]]=={1}&&Mod[ #+9,11]!=1&] (* or *) LinearRecurrence[{1,0,0,0,0,0,0,0,0,1,-1},{2523,5043,7563,10083,12603,15123,17643,20163,22683,25203,30243},40](* Harvey P. Dale, Sep 25 2019 *)
  • PARI
    {k=9;m=95000;for(n=1,m,j=0;b=1;while(b&&j
    				

Formula

G.f.: 3*x*(839*x^10 +840*x^9 +840*x^8 +840*x^7 +840*x^6 +840*x^5 +840*x^4 +840*x^3 +840*x^2 +840*x +841) / ((x -1)^2*(x +1)*(x^4 -x^3 +x^2 -x +1)*(x^4 +x^3 +x^2 +x +1)). - Colin Barker, Apr 11 2013