A096022 Numbers that are congruent to {15, 27, 39, 51} mod 60.
15, 27, 39, 51, 75, 87, 99, 111, 135, 147, 159, 171, 195, 207, 219, 231, 255, 267, 279, 291, 315, 327, 339, 351, 375, 387, 399, 411, 435, 447, 459, 471, 495, 507, 519, 531, 555, 567, 579, 591, 615, 627, 639, 651, 675, 687, 699, 711, 735, 747, 759, 771, 795
Offset: 1
Examples
51 mod 2 = 52 mod 3 = 53 mod 4 = 1 and 54 mod 5 = 4, hence 51 is in the sequence; 3 mod 2 = 4 mod 3 = 5 mod 4 = 6 mod 5 = 1, hence 3 is not in the sequence.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
Programs
-
Magma
[ n : n in [1..1500] | n mod 60 in [15, 27, 39, 51] ] // Vincenzo Librandi, Mar 24 2011
-
Maple
A096022:=n->3*(10*n-3-I^(2*n)-(1-I)*I^(-n)-(1+I)*I^n)/2: seq(A096022(n), n=1..80); # Wesley Ivan Hurt, Jun 04 2016
-
Mathematica
Table[3*(10n-3-I^(2n)-(1-I)*I^(-n)-(1+I)*I^n)/2, {n, 80}] (* Wesley Ivan Hurt, Jun 04 2016 *)
-
PARI
{k=3;m=800;for(n=1,m,j=0;b=1;while(b&&j
Formula
G.f.: 3*x*(5+4*x+4*x^2+4*x^3+3*x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jun 04 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = 3*(10*n-3-i^(2*n)-(1-i)*i^(-n)-(1+i)*i^n)/2 where i=sqrt(-1). (End)
E.g.f.: 3*(3 + sin(x) - cos(x) + (5*x - 1)*sinh(x) - (2 - 5*x)*cosh(x)). - Ilya Gutkovskiy, Jun 05 2016
Extensions
New definition from Ralf Stephan, Dec 01 2004
Comments