A096023 Numbers congruent to {63, 123, 183, 243, 303, 363} mod 420.
63, 123, 183, 243, 303, 363, 483, 543, 603, 663, 723, 783, 903, 963, 1023, 1083, 1143, 1203, 1323, 1383, 1443, 1503, 1563, 1623, 1743, 1803, 1863, 1923, 1983, 2043, 2163, 2223, 2283, 2343, 2403, 2463, 2583, 2643, 2703, 2763, 2823, 2883, 3003, 3063, 3123
Offset: 1
Examples
63 mod 2 = 64 mod 3 = 65 mod 4 = 66 mod 5 = 67 mod 6 = 1 and 68 mod 7 = 5, hence 63 is in the sequence.
Links
- Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,1,-1).
Crossrefs
Programs
-
Magma
[ n : n in [1..3500] | n mod 420 in [63, 123, 183, 243, 303, 363] ] // Vincenzo Librandi, Mar 24 2011
-
Magma
/* Alternatively:*/ &cat[ [ 60*n+3, 60*n+63 ]: n in [1..52] | n mod 7 in [1,3,5] ]; // Bruno Berselli, Mar 25 2011
-
Maple
A096023:=n->420*floor(n/6)+[63, 123, 183, 243, 303, 363][(n mod 6)+1]: seq(A096023(n), n=0..80); # Wesley Ivan Hurt, Jul 22 2016
-
Mathematica
Select[Range[0, 5*10^3], MemberQ[{63, 123, 183, 243, 303, 363}, Mod[#, 420]] &] (* Wesley Ivan Hurt, Jul 22 2016 *)
-
PARI
{k=5;m=3150;for(n=1,m,j=0;b=1;while(b&&j
Formula
G.f.: 3*x*(21+20*x+20*x^2+20*x^3+20*x^4+20*x^5+19*x^6) / ( (1+x)*(1+x+x^2)*(x^2-x+1)*(x-1)^2 ). - R. J. Mathar, Oct 08 2011
From Wesley Ivan Hurt, Jul 22 2016: (Start)
a(n) = a(n-1) + a(n-6) - a(n-7) for n>7; a(n) = a(n-6) + 420 for n>6.
a(n) = (210*n - 96 - 30*cos(n*Pi/3) - 30*cos(2*n*Pi/3) - 15*cos(n*Pi) + 30*sqrt(3)*sin(n*Pi/3) + 10*sqrt(3)*sin(2*n*Pi/3))/3.
a(6k) = 420k-57, a(6k-1) = 420k-117, a(6k-2) = 420k-177, a(6k-3) = 420k-237, a(6k-4) = 420k-297, a(6k-5) = 420k-357. (End)
Extensions
New definition from Ralf Stephan, Dec 01 2004
Comments