A096033 Difference between leg and hypotenuse in primitive Pythagorean triangles.
1, 2, 8, 9, 18, 25, 32, 49, 50, 72, 81, 98, 121, 128, 162, 169, 200, 225, 242, 288, 289, 338, 361, 392, 441, 450, 512, 529, 578, 625, 648, 722, 729, 800, 841, 882, 961, 968, 1058, 1089, 1152, 1225, 1250, 1352, 1369, 1458, 1521, 1568, 1681, 1682, 1800, 1849
Offset: 1
References
- L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 170.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10099
- James M. Parks, Computing Pythagorean Triples, arXiv:2107.06891 [math.GM], 2021.
- James M. Parks, On the Curved Patterns Seen in the Graph of PPTs, arXiv:2104.09449 [math.CO], 2021.
Programs
-
Mathematica
nmax = 100; Union[2 Range[nmax]^2, (2 Range[0, Ceiling[nmax/Sqrt[2]]] + 1)^2] (* Jean-François Alcover, Jan 01 2019 *)
-
PARI
upto(n) = vecsort(concat(vector((sqrtint(n)+1)\2, i, (2*i-1)^2), vector(sqrtint(n\2), i, 2*i^2))) \\ David A. Corneth, Jan 02 2019
Formula
Sum_{n>=1} 1/a(n) = 5*Pi^2/24 = 10 * A245058. - Amiram Eldar, Feb 14 2021
Extensions
Corrected and extended by Matthew Vandermast and Ray Chandler, Jun 17 2004
Erroneous comment deleted by Andrew Weimholt, Sep 07 2010
Comments