cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A096053 a(n) = (3*9^n - 1)/2.

Original entry on oeis.org

1, 13, 121, 1093, 9841, 88573, 797161, 7174453, 64570081, 581130733, 5230176601, 47071589413, 423644304721, 3812798742493, 34315188682441, 308836698141973, 2779530283277761, 25015772549499853, 225141952945498681
Offset: 0

Views

Author

Benoit Cloitre, Jun 18 2004

Keywords

Comments

Generalized NSW numbers. - Paul Barry, May 27 2005
Counts total area under elevated Schroeder paths of length 2n+2, where area under a horizontal step is weighted 3. Case r=4 for family (1+(r-1)x)/(1-2(1+r)x+(1-r)^2*x^2). Case r=2 gives NSW numbers A002315. Fifth binomial transform of (1+8x)/(1-16x^2), A107906. - Paul Barry, May 27 2005
Primes in this sequence include: a(2) = 13, a(4) = 1093, a(7) = 797161. Semiprimes in this sequence include: a(3) = 121 = 11^2, a(5) = 9841 = 13 * 757, a(6) = 88573 = 23 * 3851, a(9) = 64570081 = 1871 * 34511, a(10) = 581130733 = 1597 * 363889, a(12) = 47071589413 = 47 * 1001523179, a(19) = 225141952945498681 = 13097927 * 17189128703.
Sum of divisors of 9^n. - Altug Alkan, Nov 10 2015

Crossrefs

Cf. A107903, A138894 ((5*9^n-1)/4).

Programs

Formula

From Paul Barry, May 27 2005: (Start)
G.f.: (1+3*x)/(1-10*x+9*x^2);
a(n) = Sum_{k=0..n} binomial(2n+1, 2k)*4^k;
a(n) = ((1+sqrt(4))*(5+2*sqrt(4))^n+(1-sqrt(4))*(5-2*sqrt(4))^n)/2. (End)
a(n-1) = (-9^n/3)*B(2n,1/3)/B(2n) where B(n,x) is the n-th Bernoulli polynomial and B(k)=B(k,0) is the k-th Bernoulli number.
a(n) = 10*a(n-1) - 9*a(n-2).
a(n) = 9*a(n-1) + 4. - Vincenzo Librandi, Nov 01 2011
a(n) = A000203(A001019(n)). - Altug Alkan, Nov 10 2015
a(n) = A320030(3^n-1). - Nathan M Epstein, Jan 02 2019

Extensions

Edited by N. J. A. Sloane, at the suggestion of Andrew S. Plewe, Jun 15 2007

A094938 a(n)=(-36^n/18)*B(2n,1/6)/B(2n,1/3) where B(n,x) is the n-th Bernoulli polynomial.

Original entry on oeis.org

1, 63, 2511, 92583, 3352671, 120873303, 4353033231, 156723545223, 5642176768191, 203119525916343, 7312313393341551, 263243376303474663, 9476762394213697311, 341163453817290588183, 12281884406052838539471
Offset: 1

Views

Author

Benoit Cloitre, Jun 19 2004

Keywords

Crossrefs

Cf. A096054.

Programs

  • Mathematica
    LinearRecurrence[{45,-324},{1,63},20] (* Harvey P. Dale, Mar 09 2018 *)
  • PARI
    B(n,x)=sum(i=0,n,binomial(n,i)*bernfrac(i)*x^(n-i));a(n)=(-36^n/18)*B(n,1/6)/B(n,1/3)

Formula

a(n)=9^n/18*(4^n-2)
a(n)=9^(n-1)/2*(2^(2n)-2) - Harvey P. Dale, Mar 09 2018
G.f.: x*(1+18*x) / ( (36*x-1)*(9*x-1) ). - R. J. Mathar, Nov 15 2019

Extensions

Incorrect recurrence formula deleted by Harvey P. Dale, Mar 09 2018
Showing 1-2 of 2 results.