cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A138894 Expansion of (1+x)/(1-10*x+9*x^2).

Original entry on oeis.org

1, 11, 101, 911, 8201, 73811, 664301, 5978711, 53808401, 484275611, 4358480501, 39226324511, 353036920601, 3177332285411, 28595990568701, 257363915118311, 2316275236064801, 20846477124583211, 187618294121248901
Offset: 0

Views

Author

Paul Barry, Apr 02 2008

Keywords

Comments

Orbit starting at 1 of A138893: a(n)=A138893^(n)(1). Partial sums of A003952.
Sum of n-th row of triangle of powers of 9: 1; 1 9 1; 1 9 81 9 1; 1 9 81 729 81 9 1; ... - Philippe Deléham, Feb 22 2014

Examples

			a(0) = 1;
a(1) = 1 + 9 + 1 = 11;
a(2) = 1 + 9 + 81 + 9 + 1 = 101;
a(3) = 1 + 9 + 81 + 729 + 81 + 9 + 1 = 911; etc. - _Philippe Deléham_, Feb 22 2014
		

Crossrefs

Cf. A096053 ((3*9^n-1)/2), a(n+1)=9a(n)-4 in A135423.

Programs

Formula

G.f.: (1+x)/((1-x)*(1-9x)).
a(n) = (5/4)*9^n - 1/4.
a(n) = A002452(n) + A002452(n+1).
Bisection of A135522/3. a(n+1)=9*a(n)+2. - Paul Curtz, Apr 22 2008
a(n) = Sum_{k=0..n} A112468(n,k)*10^k. - Philippe Deléham, Feb 22 2014

A191681 a(n) = (9^n - 1)/2.

Original entry on oeis.org

0, 4, 40, 364, 3280, 29524, 265720, 2391484, 21523360, 193710244, 1743392200, 15690529804, 141214768240, 1270932914164, 11438396227480, 102945566047324, 926510094425920, 8338590849833284, 75047317648499560, 675425858836496044
Offset: 0

Views

Author

Adi Dani, Jun 11 2011

Keywords

Comments

Number of compositions of odd numbers into n parts < 9.
These are also the junctions of the Collatz trajectories of 2^(2k-1)-1 and 2^2k-1. - David Rabahy, Nov 01 2017
a(n) gives the number of turns in the n-th iteration of the Peano curve given by plotting (A163528, A163529) or by (Siromoney 1982). - Jason V. Morgan, Oct 08 2021

Examples

			a(2)=40: there are 40 compositions of odd numbers into 2 parts < 9:
1:  (0,1),(1,0);
3:  (0,3),(3,0),(1,2),(2,1);
5:  (0,5),(5,0),(1,4),(4,1),(2,3),(3,2);
7:  (0,7),(7,0),(1,6),(6,1),(2,5),(5,2),(3,4),(4,3);
9:  (1,8),(8,1),(2,7),(7,2),(3,6),(6,3),(4,5),(5,4);
11: (3,8),(8,3),(4,7),(7,4),(5,6),(6,5);
13: (5,8),(8,5),(6,7),(7,6);
15: (7,8),(8,7).
		

Crossrefs

Programs

Formula

a(0)=0, a(1)=4, a(n) = 10*a(n-1) - 9*a(n-2). - Harvey P. Dale, Jun 19 2011
G.f.: 4*x / ((x-1)*(9*x-1)). - Colin Barker, May 16 2013
a(n) = 2 * A125857(n+1) = 4 * A002452(n). - Bernard Schott, Oct 29 2021

Extensions

Example corrected by L. Edson Jeffery, Feb 13 2015

A104033 Triangle, read by rows, equal to the matrix inverse of triangle A103327, where A103327(n,k) = binomial(2*n+1,2*k+1).

Original entry on oeis.org

1, -3, 1, 25, -10, 1, -427, 175, -21, 1, 12465, -5124, 630, -36, 1, -555731, 228525, -28182, 1650, -55, 1, 35135945, -14449006, 1782495, -104676, 3575, -78, 1, -2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1, 329655706465, -135565467080, 16724709820, -982532408
Offset: 0

Views

Author

Paul D. Hanna, Feb 28 2005

Keywords

Comments

Column 0 equals signed A009843 (expansion of x/cosh(x)). Row sums form signed A000182 (expansion of tanh(x)).
The matrix logarithm is L(n,k) = -(-1)^(n-k)*A000182(n-k)*A103327(n,k), where A000182 = tangent numbers.
Let E(y) = cosh(sqrt(y)) = 1 + 3*y/3! + 5*y^2/5! + 7*y^3/7! + .... so that 1/E(y) = 1 - 3*y/3! + 25*y^2/5! - 427*y^3/7! + .... Then this triangle is the generalized Riordan array (1/E(y), y) with respect to the sequence (2*n+1)! as defined in Wang and Wang. - Peter Bala, Aug 06 2013

Examples

			Rows begin:
1;
-3, 1;
25, -10, 1;
-427, 175, -21, 1;
12465, -5124, 630, -36, 1;
-555731 ,228525, -28182, 1650, -55, 1;
35135945, -14449006, 1782495, -104676, 3575, -78, 1;
-2990414715, 1229758075, -151714563, 8912475, -305305, 6825, -105, 1;
329655706465, -135565467080, 16724709820, -982532408, 33669350, -754936, 11900, -136, 1; ...
From _Peter Bala_, Aug 06 2013: (Start)
The real zeros of the row polynomials R(n,x) seem to converge to the even squares as n increases.
Polynomial |        Real zeros to 6 decimal places
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
R(5,x)     | 3.999986
R(10,x)    | 4.000000, 15.999978
R(15,x)    | 4.000000, 16.000000, 35.999992, 64.414273, 76.998346
= = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = = =
(End)
		

Crossrefs

Programs

  • PARI
    {T(n,k) = if(n=j, binomial(2*m-1,2*j-1))))^-1)[n+1,k+1])}
    for(n=0,10,for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    {T(n,k) = binomial(2*n+1,2*k+1) * polcoeff(1/cosh(x+x*O(x^(2*n))), 2*n-2*k) * (2*n-2*k)!}
    for(n=0,10,for(k=0,n, print1(T(n,k),", "));print(""))

Formula

Column k: Sum_{j=0..n} C(2*n+1, 2*j+1) * T(j, k) = 0 (n>k), or 1 (n=k).
Row n: Sum_{j=0..n} T(n, j) * C(2*j+1, 2*k+1) = 0 (k
Sum_{k=0..n} T(n, k) * 4^k = 1 for n >= 0.
T(n, k) = (-1)^(n-k)*A000364(n-k)*A103327(n, k), where A000364 = Euler numbers.
Sum_{k=0..n} (-1)^(n-k)*T(n, k) = A002084(n). - Philippe Deléham, Aug 27 2005
From Peter Bala, Aug 06 2013: (Start)
Generating function: 1/sqrt(x)*sinh(sqrt(x)*t)/cosh(t) = t + (-3 + x)*t^3/3! + (25 - 10*x + x^2)*t^5/5! + ....
Recurrence equation for the row polynomials: R(n,x) = x^n - Sum_{k = 0..n-1} binomial(2*n+1,2*k+1)*R(k,x) with initial value R(0,x) = 1.
It appears that for arbitrary nonzero complex x we have
lim_{n -> inf} R(n,x^2)/R(n,0) = (1/(Pi/2*x))*sin(Pi/2*x).
A stronger result than pointwise convergence may hold: the convergence may be uniform on compact subsets of the complex plane. This would explain the observation that the real zeros of the polynomials R(n,x) seem to converge to the even squares 4, 16, 36, ... as n increases. Some numerical examples are given below. Cf. A055133, A086646 and A103364.
If p = 2*n + 1 is a prime then all the entries in row n are divisible by p, apart from T(n,n) = 1. Thus the row sum is congruent to 1 modulo p.
Row sums R(n,1) = (-1)^n*A000182(n+1).
R(n,4) = 1; R(n,16) = (1/2)*( 3^(2*n+1) - 1 ) = A096053(n);
R(n,36) = (1/3)*( 5^(2*n+1) - 3^(2*n+1) + 1 );
R(n,64) = (1/4)*( 7^(2*n+1) - 5^(2*n+1) + 3^(2*n+1) - 1 ). (End)

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Jun 08 2007

A107903 Generalized NSW numbers.

Original entry on oeis.org

1, 10, 76, 568, 4240, 31648, 236224, 1763200, 13160704, 98232832, 733219840, 5472827392, 40849739776, 304906608640, 2275853910016, 16987204845568, 126794223124480, 946404965613568, 7064062832410624, 52726882796830720
Offset: 0

Author

Paul Barry, May 27 2005

Keywords

Comments

Counts total area under elevated Schroeder paths of length 2n+2, where horizontal steps can choose from three colors.
Case r=3 for family (1+(r-1)x)/(1-2(1+r)x+(1-r)^2*x^2). Case r=2 gives NSW numbers A002315 and case r=4 gives NSW numbers A096053.
Fifth binomial transform of (1+8x)/(1-16x^2), A107906.
If p is an odd prime, a((p-1)/2) == 1 mod p. - Altug Alkan, Mar 17 2016

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2 n + 1, 2 k] 3^k, {k, 0, n}], {n, 0, 20}] (* or *) CoefficientList[Series[(1 + 2 x)/(1 - 8 x + 4 x^2), {x, 0, 20}], x] (* Michael De Vlieger, Mar 17 2016 *)
  • PARI
    Vec((1+2*x)/(1-8*x+4*x^2) + O(x^40)) \\ Michel Marcus, Mar 17 2016

Formula

G.f.: (1+2*x)/(1-8*x+4*x^2). [corrected by Ralf Stephan, Nov 30 2010]
a(n) = Sum_{k=0..n} binomial(2*n+1, 2*k)*3^k.
a(n) = ((1+sqrt(3))*(4+2*sqrt(3))^n+(1-sqrt(3))*(4-2*sqrt(3))^n)/2 = A099156(n+1)+2*A099156(n).
a(n) = 8*a(n-1) - 4*a(n-2); a(0) = 1, a(1) = 10. - Lekraj Beedassy, Apr 19 2020
a(n) = 2^n*A001834(n). - Philippe Deléham, Mar 18 2023

Extensions

Typo corrected and link added by Johannes W. Meijer, Aug 07 2010

A096054 a(n) = (36^n/6)*B(2n,1/6)/B(2n) where B(n,x) is the n-th Bernoulli polynomial and B(k) = B(k,0) is the k-th Bernoulli number.

Original entry on oeis.org

1, 91, 3751, 138811, 5028751, 181308931, 6529545751, 235085301451, 8463265086751, 304679288612371, 10968470088963751, 394865064451017691, 14215143591303768751, 511745180725868773411, 18422826609078989373751, 663221758853362301815531, 23875983327059668074930751
Offset: 1

Author

Benoit Cloitre, Jun 18 2004

Keywords

Programs

  • Mathematica
    a[n_] := 6^(2*n-1) * BernoulliB[2*n, 1/6] / BernoulliB[2*n]; Array[a, 15] (* Amiram Eldar, May 07 2025 *)
  • PARI
    a(n)=(1/12)*36^n-(1/6)*9^n-(1/4)*4^n+1/2;

Formula

a(n) = (1/12)*(36^n - 2*9^n - 3*4^n+6).
From Colin Barker, May 30 2020: (Start)
G.f.: x*(1 - 6*x)*(1 + 47*x + 36*x^2) / ((1 - x)*(1 - 4*x)*(1 - 9*x)*(1 - 36*x)).
a(n) = 50*a(n-1) - 553*a(n-2) + 1800*a(n-3) - 1296*a(n-4) for n>4. (End)

A164907 a(n) = (3*3^n-(-1)^n)/2.

Original entry on oeis.org

1, 5, 13, 41, 121, 365, 1093, 3281, 9841, 29525, 88573, 265721, 797161, 2391485, 7174453, 21523361, 64570081, 193710245, 581130733, 1743392201, 5230176601, 15690529805, 47071589413, 141214768241, 423644304721, 1270932914165
Offset: 0

Author

Klaus Brockhaus, Aug 31 2009

Keywords

Comments

Interleaving of A096053 and A083884 without initial term 1.
Partial sums are (essentially) in A080926.
First differences are (essentially) in A105723.
a(n)+a(n+1) = A008776(n+1) = A099856(n+1) = A110593(n+2).
Binomial transform of A056450. Inverse binomial transform of A164908.

Crossrefs

Equals A046717 without initial term 1 and A080925 without initial term 0. Equals A084182 / 2 from second term onward.

Programs

Formula

a(n) = 2*a(n-1)+3*a(n-2) for n > 1; a(0) = 1, a(1) = 5.
G.f.: (1+3*x)/((1+x)*(1-3*x)).
a(n) = 3*a(n-1)+2*(-1)^n. - Carmine Suriano, Mar 21 2014

A107906 Expansion of (1+8x)/(1-16x^2).

Original entry on oeis.org

1, 8, 16, 128, 256, 2048, 4096, 32768, 65536, 524288, 1048576, 8388608, 16777216, 134217728, 268435456, 2147483648, 4294967296, 34359738368, 68719476736, 549755813888, 1099511627776, 8796093022208, 17592186044416
Offset: 0

Author

Paul Barry, May 27 2005

Keywords

Comments

Fifth binomial transform is A096053.

Formula

a(n) = ((1+sqrt(4))*(2*sqrt(4))^n + (1-sqrt(4))*(-2*sqrt(4))^n)/2;
a(n) = 3*4^n/2 - (-4)^n/2.
a(2n) = 16^n, a(2n+1) = 8*16^n.

A255043 a(n) = (5*9^n - 1)/2.

Original entry on oeis.org

2, 22, 202, 1822, 16402, 147622, 1328602, 11957422, 107616802, 968551222, 8716961002, 78452649022, 706073841202, 6354664570822, 57191981137402, 514727830236622, 4632550472129602, 41692954249166422, 375236588242497802, 3377129294182480222
Offset: 0

Author

L. Edson Jeffery, Feb 13 2015

Keywords

Crossrefs

Programs

  • Magma
    [(5*9^n -1)/2: n in [0..20]]; // G. C. Greubel, Feb 07 2021
  • Mathematica
    Table[(5*9^n - 1)/2, {n, 0, 19}]
    LinearRecurrence[{10,-9},{2,22},20] (* Harvey P. Dale, Jun 15 2018 *)
  • Sage
    [(5*9^n -1)/2 for n in (0..20)] # G. C. Greubel, Feb 07 2021
    

Formula

G.f.: 2*(1+x)/((1-x)*(1-9*x)).
Recurrence: a(n) = 10*a(n-1) - 9*a(n-2), n>=2, a(0) = 2, a(1) = 22.
a(n) = 2*A138894(n).
E.g.f.: (5*exp(9*x) - exp(x))/2. - G. C. Greubel, Feb 07 2021

A320030 Automaton sum similar to A102376 but using mod 3 instead of mod 2.

Original entry on oeis.org

1, 4, 13, 4, 16, 52, 13, 52, 121, 4, 16, 52, 16, 64, 208, 52, 208, 484, 13, 52, 121, 52, 208, 484, 121, 484, 1093, 4, 16, 52, 16, 64, 208, 52, 208, 484, 16, 64, 208, 64, 256, 832, 208, 832, 1936, 52, 208, 484, 208, 832, 1936, 484, 1936, 4372, 13, 52, 121, 52
Offset: 1

Author

Nathan M Epstein, Dec 10 2018

Keywords

Comments

The automaton that generates this sequence operates on a grid of cells c(i,j). The cells have three possible values, 0, 1, and 2. The next generation in the CA is calculated by applying the following rule to each cell: c(i,j) = ( c(i+1,j-1) + c(i+1,j+1) + c(i-1,j-1) + c(i-1,j+1) ) mod 3.
Start with a single cell with a value of 1, with all other cells set to 0. For each generation, the term in this sequence c(n) is the aggregate values of all cells in the grid for each discrete generation of the automaton (i.e., not cumulative over multiple generations).
The cellular automaton that generates this sequence has been empirically observed to repeat the number of active cells (4 in this case) if the iteration number N is a power of the modulus + 1. The modulus in this case is 3.
This has been observed to occur with any prime modulus and any starting pattern of cells. I'm picking this particular implementation because it's the same as the one used in A102376.
Counting the active (nonzero) cells instead of taking the sum also creates a different but related sequence. This sequence is the sum of each iteration, and cells in this automaton have values 0, 1, or 2. Only for mod 2 are both the sum and active cell counts the same.

Crossrefs

Cf. A096053.
Cf. A102376 (mod 2), A320100 (mod 5).

Programs

  • Python
    import numpy as np
    from scipy import signal
    frameSize = 301
    filter = [[0,1,0],[1,0,1],[0,1,0]] # this defines the CA neighborhood
    frame  = np.zeros((frameSize,frameSize))
    frame[frameSize//2,frameSize//2] = 1
    mod = 3
    sequence = [1]
    for j in range(140):
        frame = signal.convolve2d(frame, filter, mode='same')
        frame = np.mod(frame, mod)
        sequence.append(int(np.sum(frame.reshape(1,-1))))

Formula

a(3^n) = A096053(n).

A198960 a(n) = 3*9^n-1.

Original entry on oeis.org

2, 26, 242, 2186, 19682, 177146, 1594322, 14348906, 129140162, 1162261466, 10460353202, 94143178826, 847288609442, 7625597484986, 68630377364882, 617673396283946, 5559060566555522, 50031545098999706, 450283905890997362
Offset: 0

Author

Vincenzo Librandi, Nov 01 2011

Keywords

Programs

  • Magma
    [3*9^n-1: n in [0..20]];
  • Mathematica
    CoefficientList[Series[2*(1 + 3*x)/(1 - 10*x + 9*x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jan 03 2013 *)
    LinearRecurrence[{10,-9},{2,26},30] (* Harvey P. Dale, Dec 07 2024 *)

Formula

a(n) = 2*A096053(n).
a(n) = 9*a(n-1)+8, n>0.
a(n) = 10*a(n-1)-9*a(n-2), n>1.
G.f.: 2*(1 + 3*x)/(1 - 10*x + 9*x^2). - Vincenzo Librandi, Jan 03 2013
Showing 1-10 of 11 results. Next